Advertisement

Time Resolution and Dynamic Range of Field-Effect Transistor–Based Terahertz Detectors

  • Przemyslaw Zagrajek
  • Sergey N. Danilov
  • Jacek Marczewski
  • Michal Zaborowski
  • Cezary Kolacinski
  • Dariusz Obrebski
  • Pawel Kopyt
  • Bartlomiej Salski
  • Dmytro But
  • Wojciech Knap
  • Sergey D. GanichevEmail author
Article
  • 79 Downloads

Abstract

We studied time resolution and response power dependence of three terahertz detectors based on significantly different types of field-effect transistors. We analyzed the photoresponse of custom-made Si junctionless FETs, Si-MOSFETs, and GaAs-based high-electron-mobility transistor detectors. Applying monochromatic radiation of a high-power, pulsed, line-tunable molecular THz laser, which operated at frequencies in the range from 0.6 to 3.3 THz, we demonstrated that all these detectors have at least nanosecond response time. We showed that detectors yield a linear response in a wide range of radiation power. At high powers, the response saturates varying with radiation power P as U = R0P/(1 + P/Ps), where R0 is the low-power responsivity and Ps is the saturation power. We demonstrated that the linear part response decreases with radiation frequency increase as R0f− 3, whereas the power at which signal saturates increases as Psf3. We discussed the observed dependencies in the framework of the Dyakonov-Shur mechanism and detector-antenna impedance matching. Our study showed that FET transistors can be used as ultrafast room temperature detectors of THz radiation and that their dynamic range extends over many orders of magnitude of power of incoming THz radiation. Therefore, when embedded with current driven read-out electronics, they are very well adopted for operation with high power pulsed sources.

Keywords

Terahertz Detection Time resolution Nonlinearty 

Notes

Acknowledgments

We thank V. Kachorovskii and A. Lisauskas for fruitful discussions. Support by the CENTERA, Deutsche Forschungsgemeinschaft (DFG), and the Volkswagen Stiftung Program (90298) is gratefully acknowledged.

Funding Information

This study was partially supported by the National Center for Research and Development in Poland grants LIDER/020/319/L-5/13/NCBR/2014, PBS3/B3/30/2015, and PBS3/A3/18/2015.

References

  1. 1.
    W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. Fatimy, Y. M. Meziani, and T. Otsuji, Field effect transistors for terahertz detection: physics and first imaging applications, J. Infrared Millim. TeraHz Waves 30, 1319 (2009).Google Scholar
  2. 2.
    L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors, Nature Materials 11, 865 (2012).Google Scholar
  3. 3.
    W. Knap and M. Dyakonov, in Handbook of Terahertz Technology ed. D. Saeedkia (Woodhead Publishing, Waterloo, Canada 2013), pp. 121-155.Google Scholar
  4. 4.
    S. Boppel, A. Lisauskas, and H. G. Roskos, in Handbook of Terahertz Technology ed. D. Saeedkia (Woodhead Publishing, Waterloo, Canada 2013), pp. 231-271.Google Scholar
  5. 5.
    S. Preu, H. Lu, M. Sherwin, and A. C. Gossard, Detection of nanosecond-scale, high power THz pulses with a field effect transistor, Rev. Sci. Instrum. 83, 053101 (2012).Google Scholar
  6. 6.
    T. Otsuji, Trends in the research of modern terahertz detectors: plasmon detectors, IEEE Trans. Terahertz Sci. Technol. 5, 1110 (2015).Google Scholar
  7. 7.
    M. Dyakonov and M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett. 71, 2465 (1993).Google Scholar
  8. 8.
    M. I. Dyakonov and M. S. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron Devices 43, 380 (1996).Google Scholar
  9. 9.
    S.D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford Univ. Press 2006).Google Scholar
  10. 10.
    Yun-Shik Lee, Principles of Terahertz Science and Technology (Springer 2009).Google Scholar
  11. 11.
    Xi-Cheng Zhang and Jingzhou Xu, Introduction to THz Wave Photonics (Springer 2010).Google Scholar
  12. 12.
    E. Bründermann, H.-W. Hübers, and M.F. Kimmitt, Terahertz Techniques (Springer 2013).Google Scholar
  13. 13.
    T. Elsaesser, K. Reimann, and M. Woerner, Concepts and Applications of Nonlinear Terahertz Spectroscopy (Morgan & Claypool Publishers 2019).Google Scholar
  14. 14.
    V. Yu. Kachorovskii, S. L. Roumyantsev, W. Knap, and M. Shur, Performance limits for field effect transistors as terahertz detectors, Appl. Phys. Lett. 102, 223505 (2013).Google Scholar
  15. 15.
    J. Marczewski, W. Knap, D. Tomaszewski, M. Zaborowski, and P. Zagrajek, Silicon junctionless field effect transistors as room temperature terahertz detectors, J. Appl. Phys. 118, 104502 (2015).Google Scholar
  16. 16.
    M. Zaborowski, D. Tomaszewski, and J. Marczewski, A test structure for investigation of junctionless FETs as THz radiation sensors, Proc. SPIE 10175, Electron Technology Conf., 1017512 (2016).Google Scholar
  17. 17.
    C. Teyssandier, H. Stieglauer, E. Byk, A.-M. Couturier, P. Fellon, M. Camiade, H. Blanck, and D. Floriot, 0.1 μ m GaAs pHEMT Technology and Associated Modelling for Millimeter wave Low Noise Amplifiers, Proc. 7th European Microwave Integrated Circuits Conference, 171 (2012).Google Scholar
  18. 18.
    D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, Double-Slot Antennas on Extended Hemispherical and Elliptical Silicon Dielectric Lenses, IEEE Trans. on Microwave Theory and Techniques 41, 1738 (1993).Google Scholar
  19. 19.
    P. Kopyt, B. Salski, A. Pacewicz, P. Zagrajek, and J. Marczewski, Measurements of the responsivity of FET-based detectors of sub-THz radiation, Opto-Electron. Rev., 27, 123 (2019).Google Scholar
  20. 20.
    P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Classical ratchet effects in heterostructures with a lateral periodic potential, Phys. Rev. B 83, 165320 (2011).Google Scholar
  21. 21.
    C. Drexler, N. Dyakonova, P. Olbrich, J. Karch, M. Schafberger, K. Karpierz, Yu. Mityagin, M. B. Lifshits, F. Teppe, O. Klimenko, Y. M. Meziani, W. Knap, and S. D. Ganichev, Helicity sensitive terahertz radiation detection by field effect transistors, J. Appl. Physics 111, 124504 (2012).Google Scholar
  22. 22.
    S. D. Ganichev, U. Rössler, W. Prettl, E. L. Ivchenko, V. V. Bel’kov, R. Neumann, K. Brunner, and G. Abstreiter, Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents, Phys. Rev. B. 66, 075328 (2002).Google Scholar
  23. 23.
    W. Weber, L. E. Golub, S. N. Danilov, J. Karch, C. Reitmaier, B. Wittmann, V. V. Bel’kov, E. L. Ivchenko, Z. D. Kvon, N. Q. Vinh, A.F.G. van der Meer, B. Murdin, and S. D. Ganichev, Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures, Phys. Rev. B 77, 245304 (2008).Google Scholar
  24. 24.
    S. D. Ganichev, Ya. V. Terent’ev, and I. D. Yaroshetskii, Photon-drag photodetectors for the far-IR and submillimeter regions, Pis’ma Zh. Tekh. Fiz 11, 46 (1985) [Sov. Tech. Phys. Lett. 11, 20 (1985)].Google Scholar
  25. 25.
    S. D. Ganichev, S. A. Emel’yanov, A. G. Pakhomov, Ya. V. Terent’ev, and I. D. Yaroshetskii, Fast uncooled detector for far-IR and submillimeter laser beams, Pis’ma Zh. Tekh. Fiz 11, 913 (1985) [Sov. Tech. Phys. Lett. 11, 377 (1985)].Google Scholar
  26. 26.
    S. D. Ganichev, Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields, Physica B, 273-274, 737 (1999).Google Scholar
  27. 27.
    P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Giant spin-polarized current in a Dirac fermion system at cyclotron resonance, Phys. Rev. B 87, 235439 (2013).Google Scholar
  28. 28.
    K.-M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, Z.D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D. Weiss, B. Jenichen, and S. D. Ganichev, Cyclotron resonance assisted photocurrents in surface states of a 3D topological insulator based on a strained high mobility HgTe film, Phys. Rev. B 92, 165314 (2015).Google Scholar
  29. 29.
    W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, and M. S. Shur, Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys. 91, 9346 (2002).Google Scholar
  30. 30.
    M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects, J. Appl. Phys. 110, 054512 (2011).Google Scholar
  31. 31.
    J. Lusakowski, M. Bialek, D. Yavorskiy, J. Marczewski, P. Kopyt, W. Gwarek, W. Knap, K. Kucharski, M. Grodner, M. Gorska, and P. Grabiec, Planar antennas for detection of 340 GHz band with single Si metal-oxide-semiconductor field-effect transistors, Proc. Int. Conf. Infrared, Millimeter, and Terahertz Waves, pp. 1-2 (IEEE, Houston 2011), DOI: 10.1109/irmmw-THz.2011.6105054.Google Scholar
  32. 32.
    M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek, Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors, J. Appl. Phys. 104, 024519 (2008).Google Scholar
  33. 33.
    M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Gwarek, S. Boubanga, D. Coquillat, W. Knap, A. Shchepetov, and S. Bollaert, A High Mobility Field-Effect Transistor as an Antenna for sub-THz Radiation, AIP Conf. Proc. 1199, 503 (2010).Google Scholar
  34. 34.
    C. A. Balanis, Antenna theory: analysis and design (Hoboken, Wiley-Interscience 2005).Google Scholar
  35. 35.
    V. Yu. Kachorovskii and M. S. Shur, Field effect transistor as ultrafast detector of modulated terahertz radiation, Solid-State Electronics 52, 182 (2008).Google Scholar
  36. 36.
    D. B. But, C. Drexler, M. V. Sakhno, N. Dyakonova , O. Drachenko, F. F. Sizov, A. Gutin, S. D. Ganichev, and W. Knap, Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities, J. Appl. Phys. 115, 164514 (2014).Google Scholar
  37. 37.
    A. Gutin, V. Kachorovskii, A. Muraviev, and M. Shur Plasmonic terahertz detector response at high intensities, J. Appl. Phys. 112, 014508 (2012).Google Scholar
  38. 38.
    A. Lisauskas, K. Ikamas, S. Massabeau, M. Bauer, D. Cibiraite, J. Matukas, J. Mangeney, M. Mittendorff, S. Winnerl, V. Krozer, and H.G. Roskos, Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses, APL Photonics 3, 051705 (2018).Google Scholar
  39. 39.
    K. Ikamas, I. Nevinskas, A. Krotkus, and A. Lisauskas, Silicon field effect transistor as the nonlinear detector for terahertz autocorellators, Sensors 18, 3735 (2018).Google Scholar
  40. 40.
    M. Sakhno, F. Sizov, and A. Golenkov, Uncooled THz/sub-THz Rectifying Detectors: FET vs. SBD, J. Infr. Millimeter Terahertz Waves 34, 798 (2013).Google Scholar
  41. 41.
    P. Kopyt, B. Salski, J. Marczewski, P. Zagrajek, and J. Lusakowski, Parasitic Effects Affecting Responsivity of Sub-THz Radiation Detector Built of a MOSFET J. Infr. Millimeter Terahertz Waves 36, 1059 (2015).Google Scholar
  42. 42.
    K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H.G. Roskos, Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz, IEEE Electron Device Lett., 39, 1413 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Przemyslaw Zagrajek
    • 1
  • Sergey N. Danilov
    • 2
  • Jacek Marczewski
    • 3
  • Michal Zaborowski
    • 3
  • Cezary Kolacinski
    • 3
  • Dariusz Obrebski
    • 3
  • Pawel Kopyt
    • 4
  • Bartlomiej Salski
    • 4
  • Dmytro But
    • 5
  • Wojciech Knap
    • 5
  • Sergey D. Ganichev
    • 2
    • 5
    Email author
  1. 1.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland
  2. 2.Regensburg Terahertz Center (TerZ)University of RegensburgRegensburgGermany
  3. 3.Institute of Electron TechnologyWarsawPoland
  4. 4.Institute of Radioelectronics and Multimedia TechnologyWarsaw University of TechnologyWarsawPoland
  5. 5.International Research Centre CENTERA, Institute of High Pressure PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations