Advertisement

W-band Aperture-Type Scanning Near-Field Microscopy Using Tapered Plastic Probe

  • Nan Wang
  • Tianying ChangEmail author
  • Hong-Liang Cui
Systems
  • 35 Downloads

Abstract

An aluminum-coated PMMA tapered probe with 50 μm aperture was employed in near-field imaging at 110 GHz. The probe was chosen for near-field imaging experiments according to finite-difference time-domain electromagnetic simulation, analysis of antenna resonance, and impedance matching consideration. Imaging of a printed circuit board with a repeated structure of 450-μm-wide metal strips spaced by 550-μm-wide dielectric demonstrated a spatial resolution of 15 μm (λ/200), which is not just 100 times below the diffraction limit, but is 3 times smaller than the aperture size. Subsurface buried defect in a plastic plate (polytetrafluoroethylene defect in polyester fiber glass, 0.5 mm below the top surface of the plate) was also imaged, with a spatial resolution of 1.5 mm, and positioning error of the defect less than 0.5 mm.

Keywords

W-band Near-field imaging Aperture-type scanning probe Plastic probe 

Notes

Acknowledgments

Dr. Wei Fan participated in the early stages of this work and Mr. Yanbo Zhang performed the programming for the experiment, and their contributions are gratefully acknowledged.

Funding Information

We gratefully acknowledge financial support of this work from the National Natural Science Foundation of China (61705120), the Ministry of Science and Technology of China (2015CB755401), and the Department of Science and Technology of Shandong Province (2017GGX10108, 2018GGX101043).

References

  1. 1.
    Hongxiang Liu, Jianquan Yao, Yuye Wang, Degang Xu, and Yixin He, "Review of THz near-field imaging", J. Infrared Millim. W. 35(3), 300–309 (2016).Google Scholar
  2. 2.
    A. J. Huber, F Keilmann, J Wittborn, J Aizpurua, and R Hillenbrand, "Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices", Nano Lett. 8(11), 3766–3770 (2008).CrossRefGoogle Scholar
  3. 3.
    Bitzer Andreas, Ortner Alex, Merbold Hannes, Feurer Thomas, and Walther Markus, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle" , Opt. Express 19(3), 2537–2545 (2011).Google Scholar
  4. 4.
    A. Doi, F. Blanchard, H. Hirori, and K. Tanaka, "Near-field THz imaging of free induction decay from a tyrosine crystal", Opt. Express 18(17), 18419–18424 (2010).CrossRefGoogle Scholar
  5. 5.
    Stefan G. Stanciu, Denis E. Tranca, Radu Hristu, and George A. Stanciu, "Correlative imaging of biological tissues with apertureless scanning near-field optical microscopy and confocal laser scanning microscopy", Biomed. Opt. Express 8(12), 5374–5383 (2017).CrossRefGoogle Scholar
  6. 6.
    Mounaix P , Mavarani L , Hillger P , et al. "NearSense – advances towards a silicon-based terahertz near-field imaging sensor for Ex vivo breast tumour identification", Frequenz 72(3),1–7 (2018).Google Scholar
  7. 7.
    Hyesog Lee, Zhaowei Liu, Yi Xiong, Cheng Sun, and Xiang Zhang, "Design, fabrication and characterization of a Far-field Superlens", Solid State Commun. 146(5), 202–207 (2008).CrossRefGoogle Scholar
  8. 8.
    Zhu B, Vanloocke S, Matvejev V, et al. "Scanning near-field millimeter wave microscope combining dielectric tapered probes and metal tips", Progress In Electromagnetics Research Symposium, Suzhou, China, pp.536–539, 2011.Google Scholar
  9. 9.
    Moon K, Park H, Kim J, et al. "Subsurface nanoimaging by broadband terahertz pulse near-field microscopy", Nano Lett. 15(1), 549–552 (2015).CrossRefGoogle Scholar
  10. 10.
    Alonso-González, P, Nikitin A Y , Gao Y , et al. "Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy", Nat. Nanotechnol. 12(1), 31 (2017).CrossRefGoogle Scholar
  11. 11.
    Pernille Klarskov, Hyewon Kim, Vicki L. Colvin, and Daniel M. Mittleman, "Nanoscale laser terahertz emission microscopy", ACS Photonics 4(11), 2676–2680 (2017).CrossRefGoogle Scholar
  12. 12.
    Zhu B, He G, Stiens J, et al. "Resolution analysis of a polymethylmethacrylate tapered probe in near-field terahertz imaging", Appl. Comput. Electrom. 30(1), 30–41 (2015).Google Scholar
  13. 13.
    M. Golosovsky and D. Davidov, "Novel millimeter-wave near-field resistivity microscope", Appl. Phys. Lett. 68(11), 1579–1581 (1996).CrossRefGoogle Scholar
  14. 14.
    Hunsche S, Koch M, Brener I, et al. "THz near-field imaging", Opt. Commun. 150(1–6), 22–25 (1998).CrossRefGoogle Scholar
  15. 15.
    Klein N, Lahl P, Poppe U, et al. "A metal-dielectric antenna for terahertz near-field imaging", J. Appl. Phys. 98(1), 014910 (2005).CrossRefGoogle Scholar
  16. 16.
    Liu Jing-bo, Mendis R, Mittleman D M, et al. "A tapered parallel-plate-waveguide probe for THz near-field reflection imaging", Appl. Phys. Lett. 100(3), 031101 (2012).CrossRefGoogle Scholar
  17. 17.
    Mitrofanov O, Renaud C C, and Seeds A J, "Terahertz probe for spectroscopy of sub-wavelength objects", Opt. Express 20(6), 6197–6202 (2012).CrossRefGoogle Scholar
  18. 18.
    Ishihara K, Ikari T, Minamide H, et al. "Terahertz near field imaging using enhanced transmission through a single subwavelength aperture", Jpn. J. Appl. Phys. 44(29), L929-L931 (2005).Google Scholar
  19. 19.
    Nathan S. Greeney, and John A. Scales, "Dielectric microscopy with submillimeter resolution", Appl. Phys. Lett. 91(22), 222909–222909-3 (2007).CrossRefGoogle Scholar
  20. 20.
    Milan Berta, Petr Kuzel, and Filip Kadlec, "Study of responsiveness of near-field terahertz imaging probes", J. Phys. D Appl. Phys. 42(15), 155501 (2009).CrossRefGoogle Scholar
  21. 21.
    Weiss M D, Zadler B, Schafer S, et al. "Near field millimeter wave microscopy with conical Teflon probes", J. Appl. Phys. 106(4), 044912 (2009).CrossRefGoogle Scholar
  22. 22.
    Jędrzej Szelc, and Harvey Rutt, "Near-field THz imaging and spectroscopy using a multiple subwavelength aperture modulator", IEEE T. THz. Sci. Techn. 3(2), 165–171 (2013).CrossRefGoogle Scholar
  23. 23.
    Zhu B, Stiens J, Poesen G, Vanloocke S, De Zutter D, and Vounckx R, "Dielectric analysis of 3D printed materials for focusing elements operating in mm and THz wave frequency bands", Proceedings of Symposium IEEE/LEOS Benelux Chapter, Delft, Netherland, pp.13–16, 2010.Google Scholar
  24. 24.
    Zhu B, Stiens J, Matvejev V, and Vounckx R, "Inexpensive and easy fabrication of multi-mode tapered dielectric circular probes at millimeter wave frequencies", Prog. Electromagn. Res. 126, 237–254 (2012).CrossRefGoogle Scholar
  25. 25.
    Zhu B, Stiens J, Vounckx R, and He G, "Analysis and optimization of a focusing metaldielectric probe for near-field terahertz imaging", Proceedings of the 10th European Radar Conference, Nuremberg, Germany, pp.431–434, 2013.Google Scholar
  26. 26.
    Olutosin Charles Fawole, and Massood Tabib-Azar, "Terahertz near-field imaging of biological samples with horn antenna-excited probes", IEEE Sens. J. 16(24), 8752–8760 (2016).CrossRefGoogle Scholar
  27. 27.
    Tie-Jun Huang, Heng-He Tang, Li-Zheng Yin, Jiang-Yu Liu, Yunhua Tan, and Pu-Kun Liu, "Experimental demonstration of an ultra-broadband subwavelength resolution probe from microwave to terahertz regime", Opt. Lett. 43(15), 3646–3649 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Instrumentation and Electrical EngineeringJilin UniversityChangchunChina
  2. 2.Institute of AutomationQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of SciencesChongqingChina

Personalised recommendations