Advertisement

Novel Pentagram THz Hollow Core Anti-resonant Fiber Using a 3D Printer

  • Shuai YangEmail author
  • Xinzhi Sheng
  • Guozhong ZhaoEmail author
  • Ying Wang
  • Yang Yu
Article
  • 87 Downloads

Abstract

A novel pentagram THz hollow core anti-resonant fiber (HC-ARF) is proposed and fabricated by a 3D printer in this paper. By utilizing the advantage of 3D print technology, a novel structure of one ring triangular air holes is introduced in the cladding and thus a pentagram hollow core is formed, which breaks through the limitation of the material absorption and effectively lowers the propagation loss of THz wave. Numerical results show that the loss as low as 0.02 cm−1 can be obtained for the proposed fiber within the THz frequency range from 0.5 to 2 THz. The fiber samples with different length of 10 cm and 15 cm are fabricated and measured experimentally. Experimental results demonstrate that the minimum loss of 0.025 cm−1 is obtained at 1.94 THz. Furthermore, the proposed fiber also has the advantage of excellent resistance to structural deformation.

Keywords

Hollow core anti-resonant fiber Terahertz Pentagram core Fiber design and fabrication 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant No. 61575016).

References

  1. 1.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald and W. R. Tribe, “Security applications of terahertz technology,” Proceedings of SPIE Vol. 5070 44–52 (2003).CrossRefGoogle Scholar
  2. 2.
    M. Nagel, M. Foerst, H. Kurz, “THz biosensing devices: fundamentals and technology,” Journal of Physics: Condensed Matter 18(18): S601-S618 (2006).Google Scholar
  3. 3.
    M. Mandehgar, D. Grischkowsky, “Optimal dispersion compensation within atmospheric THz communication channels,” Radio and Wireless Symposium 2016, IEEE 196-199 (2016).Google Scholar
  4. 4.
    Y. Xiang, J. Zhu, “Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene,” IEEE Photonics Journal 10(1):1–7 (2018).CrossRefGoogle Scholar
  5. 5.
    J. F. O’hara, R. Singh, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express 16(3): 1786–1795 (2018).CrossRefGoogle Scholar
  6. 6.
    G. Gallot, S. P. Jamison, “Terahertz waveguides,” Journal of the Optical Society of America B-Optical Physics 17(5): 851–863 (2000).CrossRefGoogle Scholar
  7. 7.
    R. Mendis, D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Optics Letters 26(11): 846–848 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Wang, DM. Mittleman, “Metal wires for terahertz wave guiding”, Nature, 432(7015): 376–379 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Han, H. Park, M. Cho and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Applied Physics Letters 80(15): 2634–2636 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Anthony, R. Leonhardt, A. Argyros, “Characterization of a microstructured Zeonex terahertz fiber,” Journal of the Optical Society of America B-Optical Physics 28(5): 1013–1018 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Optics Express 16(9): 6340–6351 (2008).CrossRefGoogle Scholar
  12. 12.
    MS. Islam, J. Sultana, S. Rana, MR. Islam, and M. Faisal, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission.” Optical Fiber Technology 34: 6–11 (2017).CrossRefGoogle Scholar
  13. 13.
    J. Fan, Y. Li, “Design of broadband porous-core bandgap terahertz fibers,” IEEE Photonics Technology Letters 28(10): 1096–1099 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Rana, A. S. Rakin, M. R. Hasan, and M. S. Reza, “Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime,” Optics Communications 410: 452–456 (2018).CrossRefGoogle Scholar
  15. 15.
    R. Ding, S. Hou, D. Wang, “Novel design of a diamond-core photonic crystal fiber for terahertz wave,” Transmission. Progress In Electromagnetics Research Symposium-Spring 2017, IEEE 1148-1151 (2017).Google Scholar
  16. 16.
    J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Applied Physics Letters. 92(6): 064105 (2008).CrossRefGoogle Scholar
  17. 17.
    C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Optics Letters. 34(21): 3457–3459 (2009).CrossRefGoogle Scholar
  18. 18.
    D. Chen, H. Chen, “A novel low-loss terahertz waveguide polymer,” Optics Express 18(4): 3762–3767 (2010).CrossRefGoogle Scholar
  19. 19.
    V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Optics Express 21(3): 3388–3399 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Scientific Reports, 5, 7620 (2015).Google Scholar
  21. 21.
    W. Lu, “Demonstration of low-loss flexible fibers with Zeonex tube-lattice cladding for terahertz transmission,” Optical Fiber Communication Conference 2015, IEEE 1–3 (2015).Google Scholar
  22. 22.
    H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, “Flexible single-mode hollow-core terahertz fiber with metamaterial cladding,” Optica 3(9): 941–947 (2016).CrossRefGoogle Scholar
  23. 23.
    B. Zhang, Y. Guo, H. Zirath, and Y. P. Zhang, “Investigation on 3-D-printing technologies for millimeter- wave and terahertz applications,” Proceedings of the IEEE, 105(4): 723–736 (2017).CrossRefGoogle Scholar
  24. 24.
    H. Xin, and M. Liang, “3-D-printed microwave and THz devices using polymer jetting techniques,” Proceedings of the IEEE, 105(4): 737–755 (2017).CrossRefGoogle Scholar
  25. 25.
    A. D. Squires, and R. A. Lewis, “Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices,” Journal of Infrared, Millimeter, and Terahertz Waves 39(7): 614–635 (2018).CrossRefGoogle Scholar
  26. 26.
    S. F. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” Journal of Infrared, Millimeter, and Terahertz Waves 35(12): 993–997 (2014)CrossRefGoogle Scholar
  27. 27.
    W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, “3D printed diffractive terahertz lenses,” Optics Letters 41(8): 1748–1751 (2016).CrossRefGoogle Scholar
  28. 28.
    S. Pandey, B. Gupta, A. Nahata, “Terahertz plasmonic waveguides created via 3D printing,” Optics Express 21(21): 24422–24430 (2013).CrossRefGoogle Scholar
  29. 29.
    N. Yudasari, J. Anthony and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Optics Express 22(21): 26042–26054 (2014).CrossRefGoogle Scholar
  30. 30.
    A. L. Cruz, V. Serrão, C. L. Barbosa, and M. A. Franco, “3D printed hollow core fiber with negative curvature for terahertz applications,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications 14: 45–53 (2015).Google Scholar
  31. 31.
    J. Yang, J. Zhao,C. Gong, “3D printed low-loss THz waveguide based on Kagome photonic crystal structure,” Optics Express 24(20): 22454–22460 (2016).CrossRefGoogle Scholar
  32. 32.
    A. L. Cruz, C. Cordeiro, and M. A. Franco, “3D printed hollow-core terahertz fibers,” Fibers 6(3): 43 (2018).CrossRefGoogle Scholar
  33. 33.
    L. D. van Putten, J. Gorecki, E. Numkam Fokoua, V. Apostolopoulos, and F. Poletti, “3D-printed polymer antiresonant waveguides for short-reach terahertz applications,” Applied Optics 57(14), 3953–3958 (2018).CrossRefGoogle Scholar
  34. 34.
    F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” European Conference and Exposition on Optical Communications, Optical Society of America, 2011: Mo. 2. LeCervin. 2.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.Department of Physics, Capital Normal University, Key Lab of THz OptoelectronicsMinistry of EducationBeijingChina

Personalised recommendations