Terahertz Analysis of Phthalocyanine Pigments

  • A. D. SquiresEmail author
  • R. A. Lewis


In situ, non-invasive and non-destructive analysis of important artworks and cultural pieces is largely important in art conservation science. Terahertz time-domain spectroscopy and imaging delivers these requirements but lacks a materials database with fundamental understanding of salient pigments, binders and substrates. In this study, the most important synthetic pigments, the copper phthalocyanines, are investigated through terahertz time-domain spectroscopy. The terahertz spectrum reveals a series of characteristic modes in a 0.1–3-THz range across 14 pigment samples. Identification and distinction of copper phthalocyanines’ α, β and 𝜖 crystal polymorphs is demonstrated. This uniqueness within the terahertz regime is extended to two halogenated variants and a metal-free form. This invites the use of THz spectroscopy in investigation of contemporary artworks, post 1935, containing these pigments and promotes applications such as identifying fraudulent works of art.


Terahertz THz Spectroscopy Phthalocyanine Pigment Paint Painting Art Artwork 



We would like to acknowledge Saroj Bhattacharyya and the University of New South Wales for assistance in acquiring PXRD of the pigment samples.


  1. 1.
    K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice (Springer, Tokyo, 2016).Google Scholar
  2. 2.
    J.B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, K. Fukunaga, IEEE Transactions on Terahertz Science and Technology 1(1) (2011).Google Scholar
  3. 3.
    K. Fukunaga, M. Piccolo, Appl. Phys. A 100, 591 (2010).Google Scholar
  4. 4.
    A.D. Squires, M.T. Kelly, R.A. Lewis, Journal of Infrared, Millimeter and Terahertz Waves 38, 314 (2016).Google Scholar
  5. 5.
    A.D. Squires, R.A. Lewis, A.J. Zaczek, T.M. Korter, Journal of Physical Chemistry A 121, 3423 (2017).Google Scholar
  6. 6.
    Z. Zhang, C. Zhang, Y. Yang, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2016).Google Scholar
  7. 7.
    E. Abraham, A. Younus, J.C. Delagnes, P. Mounaix, Appl. Phys. A 100, 585 (2010).Google Scholar
  8. 8.
    M. Piccolo, K. Fukunaga, J. Labaune, Journal of Cultural Heritage 16, 73 (2015).Google Scholar
  9. 9.
    K. Fukunaga, I. Hosako, Comptes Rendus Physique 11, 519 (2010).Google Scholar
  10. 10.
    C.L.K. Dandolo, A. Cosentino, P.U. Jepsen, Studies in Conservation 60(159-166) (2015).Google Scholar
  11. 11.
    J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling, S.L. Williamson, M. Menu, G.A. Mourou, Optics Communications 281, 527 (2008).Google Scholar
  12. 12.
    R.M. Groves, B. Pradarutti, E. Kouloumpi, W. Osten, G. Notni, NDT&E International 42, 543 (2009).Google Scholar
  13. 13.
    G. Pastorelli, T. Trafela, P.F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlic, Analytical and Bioanalytical Chemistry 403(5), 1405 (2012).Google Scholar
  14. 14.
    K. Krugener, M. Schwerdtfeger, S.F. Busch, A. Soltani, E. Castro-Camus, M. Koch, W. Viol, Scientific Reports 5 (2015).Google Scholar
  15. 15.
    G.C. Walker, J.B. Jackson, D. Giovannacci, J.W. Bowen, B. Delandes, J. Labaune, G. Mourou, M. Menu, V. Detalle, SPIE Proceedings: The International Society for Optical Engineering 8790 (2013).Google Scholar
  16. 16.
    H.M. Smith, High Performance Pigments (Weinheim Wiley-VCH, 2002).Google Scholar
  17. 17.
    Y. Zhang, X. Cai, Y. Bian, J. Jiang, Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs) (Springer, 2009).Google Scholar
  18. 18.
    C.G. Claessens, U. Hahn, T. Torres, Phthalocyanines: From outstanding electronic properties to emerging applications (Wiley, 2008).Google Scholar
  19. 19.
    C.V. Kumar, G. Sfyri, D. Raptis, E. Stathatos, P. Lianos, RSC Advances 5(5), 3786 (2015).Google Scholar
  20. 20.
    K. Ohta, S. Tokonami, K. Takahashi, Y. Tamura, H. Yamada, K. Tominaga, The Journal of Physical Chemistry B 121(43), 10157 (2017).Google Scholar
  21. 21.
    J.S. Melinger, P. Lane, O. Esenturk, E. Heilweil, 35th IEEE Photovoltaic Specialists Conference pp. 1616–1620 (2010).Google Scholar
  22. 22.
    P.A. Lane, P.D. Cunningham, J.S. Melinger, G.P. Kushto, O. Esenturk, Physical Review Letters 108(7) (2012).Google Scholar
  23. 23.
    P.A. Lane, P.D. Cunningham, J.S. Melinger, E.J. Heilweil, Proceedings of SPIE, The International Society for Optical Engineering 9184 (2014).Google Scholar
  24. 24.
    P.D. Cunningham, P.A. Lane, J.S. Melinger, O. Esenturk, E.J. Heilweil, in Proceedings of the SPIE, vol. 9856 (2016), vol. 9856.Google Scholar
  25. 25.
    O. Esenturk, J.S. Melinger, P.A. Lane, E.J. Heilweil, Journal of Physical Chemistry. C 113(43), 18842 (2009).Google Scholar
  26. 26.
    W. Wu, Journal of Physics: Condensed Matter 26(29), 296002 (2014).Google Scholar
  27. 27.
    H.K. Yoo, C. Kang, Y. Yoon, H. Lee, J.W. Lee, Applied Physics Letters 99(6) (2011).Google Scholar
  28. 28.
    T. He, B. Zhang, J. Shen, M. Zang, T. Chen, Y. Hu, Y. Hou, Applied Physics Letters 106, 053303 (2015).Google Scholar
  29. 29.
    T. Matsui, R. Takagi, K. Takano, M. Hangyo, Optics Letters 38(22), 4632 (2013).Google Scholar
  30. 30.
    H.K. Yoo, C. Kang, J.W. Lee, C.S. Kee, Y. Yoon, H. Lee, K. Lee, Applied Physics Express 5(7), 072402 (2012).Google Scholar
  31. 31.
    H.K. Yoo, S.G. Lee, C. Kang, J.W. Lee, C.S. Kee, in 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2014).Google Scholar
  32. 32.
    H.K. Yoo, C.S. Kee, C. Kang, I.W. Hwang, J.W. Lee, Journal of Nanophotonics 7(1) (2013).Google Scholar
  33. 33.
    H.K. Yoo, S.G. Lee, C. Kang, C.S. Kee, J.W. Lee, Applied Physics Letters 103(15) (2013).Google Scholar
  34. 34.
    K. Mizoguchi, S. Fujita, M. Nakayama, Appl. Phys. A 78(4), 461 (2004).Google Scholar
  35. 35.
    J.E. Mates, I.S. Bayer, M. Salerno, P.J. Carroll, Z. Jiang, Carbon (New York) 87, 163 (2015).Google Scholar
  36. 36.
    N.B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function (Cambridge University Press, 1998).Google Scholar
  37. 37.
    G. Löbbert, Phthalocyanines (Wiley, 2000).Google Scholar
  38. 38.
    K. Hunger, Review of Progress in Coloration and Related Topics 29, 71 (1999).Google Scholar
  39. 39.
    C.J. Brown, J. Chem. Soc. A pp. 2488–2493 (1968).Google Scholar
  40. 40.
    R. Prabakaran, R. Kesavamoorthy, G.L.N. Reddy, F.P. Xavier, Physica Status Solidi 229(3), 1175 (2002).Google Scholar
  41. 41.
    J. Janczak, R. Kubiak, Journal of Alloys and Compounds 190, 121 (1992).Google Scholar
  42. 42.
    K. Kadish, R. Guilard, K.M. Smith, The Porphyrin Handbook: Applications of Phthalocyanines (Academic Press, 2012).Google Scholar
  43. 43.
    R. Kubiak, J. Janczak, Journal of Alloys and Compounds 190, 117 (1992).Google Scholar
  44. 44.
    S.Q. Lomax, J. Coat. Technol. Res. 7(3), 331 (2010).Google Scholar
  45. 45.
    C. Defeyt, P. Vandenabeele, B. Gilbert, J. Van Pevenage, R. Cloots, D. Strivay, Journal of Raman Spectroscopy 43, 1772 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Superconducting and Electronic Materials and School of PhysicsUniversity of WollongongWollongongAustralia

Personalised recommendations