Dielectric Properties of Low-Loss Polymers for mmW and THz Applications

  • Seckin SahinEmail author
  • Niru K. Nahar
  • Kubilay Sertel


We present a systematic characterization of dielectric permittivity of 6 commonly used, low-loss polymers namely polystyrene, parylene, polyimide, SLA resin, SU-8, and SUEX for the 100-GHz to 2-THz bands using transmission mode time domain spectroscopy. The dielectric constant and loss tangent for each polymer was systematically recorded using the commercially available TeraView TPS-3000 system and an analytical multilayered media transmission model is used to extract sample permittivity and loss through curve fitting the measured data. Among the studied polymers, polystyrene exhibits the lowest material loss with a loss tangent less than 0.0069 up to 100 GHz to 2 THz. Also, effects of lithographic processing on permittivity and loss for commonly used epoxy-based photoresists SU-8 and SUEX are documented and compared. We show that the dielectric properties of dry film SUEX is comparable with those of SU-8. As such, SUEX is an easy-to-process alternative to commonly used SU-8 for mmW and THz frequency applications.


Loss tangent Permittivity Time domain spectroscopy SU-8 SUEX Parylene Polyimide Polystyrene SLA resin Terahertz Millimeter-wave 



This work is supported in part by Office of Naval Research Program No: N00014-14-1-0810 and National Science Foundation under Grant No. ECCS-1444026 and CNS-1618566. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research or the National Science Foundation.


  1. 1.
    J. Thompson, X. Ge, H.-C. Wu, R. Irmer, H. Jiang, G. Fettweis, and S. Alamouti, “5G wireless communication systems: prospects and challenges [guest editorial],” IEEE Communications Magazine, vol. 52, no. 2, pp. 62–64, 2014.Google Scholar
  2. 2.
    S. Liu, N. D. Orloff, C. A. Little, W. Zhao, J. C. Booth, D. F. Williams, I. Ocket, D. M.-P. Schreurs, and B. Nauwelaers, “Hybrid characterization of nanolitre dielectric fluids in a single microfluidic channel up to 110 ghz,” IEEE Transactions on Microwave Theory and Techniques, 2017.Google Scholar
  3. 3.
    S. Sahin, N. K. Nahar, and K. Sertel, “On-chip UWB phased arrays for mmW connectivity,” 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1495–1496, 2016.Google Scholar
  4. 4.
    A. K. Au, W. Lee, and A. Folch, “Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices,” Lab on a Chip, vol. 14, no. 7, pp. 1294–1301, 2014.Google Scholar
  5. 5.
    N. Ghalichechian and K. Sertel, “Permittivity and loss characterization of SU-8 films for mmW and Terahertz applications,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 723–726, 2015.Google Scholar
  6. 6.
    E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, “Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials,” Progress In Electromagnetics Research, vol. 157, pp. 31–47, 2016.Google Scholar
  7. 7.
    Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” Journal of the Korean Physical Society, vol. 49, no. 2, pp. 513–517, 2006.Google Scholar
  8. 8.
    W. C. Chew, Waves and fields in inhomogeneous media. IEEE New York, 1995.Google Scholar
  9. 9.
    A. Podzorov and G. Gallot, “Low-loss polymers for Terahertz applications,” Applied Optics, vol. 47, no. 18, pp. 3254–3257, 2008.Google Scholar
  10. 10.
    R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, “Properties of building and plastic materials in the THz range,” International Journal of Infrared and Millimeter Waves, vol. 28, no. 5, pp. 363–371, 2007.Google Scholar
  11. 11.
    I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Optics express, vol. 15, no. 7, pp. 4335–4350, 2007.Google Scholar
  12. 12.
    L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE Journal of selected topics in quantum electronics, vol. 2, no. 3, pp. 739–746, 1996.Google Scholar
  13. 13.
    T. D. Dorney, R. G. Baraniuk, and D. M. Mittleman, “Material parameter estimation with terahertz time-domain spectroscopy,” JOSA A, vol. 18, no. 7, pp. 1562–1571, 2001.Google Scholar
  14. 14.
    V. C. Pinto, P. J. Sousa, V. F. Cardoso, and G. Minas, “Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities,” Micromachines, vol. 5, no. 3, pp. 738–755, 2014.Google Scholar
  15. 15.
    H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: Physical, vol. 64, no. 1, pp. 33–39, 1998.Google Scholar
  16. 16.
    E. H. Conradie and D. F. Moore, “SU-8 thick photoresist processing as a functional material for MEMS applications,” Journal of Micromechanics and Microengineering, vol. 12, no. 4, p. 368, 2002.Google Scholar
  17. 17.
    J. D. Williams and W. Wang, “Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 3, no. 4, pp. 563–568, 2004.Google Scholar
  18. 18.
    MicroChem, “SU-8, negative tone photoresist formulations 50-100,” 2002. Technical Data Sheet.Google Scholar
  19. 19.
    J. M. Dewdney and J. Wang, “Characterization the microwave properties of SU-8 based on microstrip ring resonator,” Wireless and Microwave Technology Conference, pp. 1–5, 2009.Google Scholar
  20. 20.
    C. Collins, R. Miles, R. Pollard, D. Steenson, J. Digby, G. Parkhurst, J. Chamberlain, N. Cronin, S. Davies, and J. W. Bowen, “Millimeter-wave measurements of the complex dielectric constant of an advanced thick film UV photoresist,” Journal of Electronic Materials, vol. 27, no. 6, pp. L40–L42, 1998.Google Scholar
  21. 21.
    F. D. Mbairi and H. Hesselbom, “High frequency design and characterization of SU-8 based conductor backed coplanar waveguide transmission lines,” International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, pp. 243–248, 2005.Google Scholar
  22. 22.
    M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1658–1665, 2007.Google Scholar
  23. 23.
    D. W. Johnson, J. Goettert, V. Singh, and D. Yemane, “SUEX process optimization for ultra-thick high-aspect ratio LIGA imaging,” Proc. SPIE, p. 79722U, 2011.Google Scholar
  24. 24.
    K. Mateti, R. A. Byrne-Dugan, C. D. Rahn, and S. A. Tadigadapa, “Monolithic SUEX flapping wing mechanisms for pico air vehicle applications,” Journal of Microelectromechanical Systems, vol. 22, no. 3, pp. 527–535, 2013.Google Scholar
  25. 25.
    S. Sahin, N. K. Nahar, and K. Sertel, “Permittivity and loss characterization of SUEX epoxy films for mmW and THz applications,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 4, pp. 1–6, 2018.Google Scholar
  26. 26.
    D. Johnson, A. Voigt, G. Ahrens, and W. Dai, “Thick epoxy resist sheets for MEMS manufacturing and packaging,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 412–415, 2010.Google Scholar
  27. 27.
    A. Kuntman and H. Kuntman, “A study on dielectric properties of a new polyimide film suitable for interlayer dielectric material in microelectronics applications,” Microelectronics Journal, vol. 31, no. 8, pp. 629–634, 2000.Google Scholar
  28. 28.
    D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, “Advanced polyimide materials: syntheses, physical properties and applications,” Progress in Polymer Science, vol. 37, no. 7, pp. 907–974, 2012.Google Scholar
  29. 29.
    H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, and R. Averitt, “Terahertz metamaterials on free-standing highly-flexible polyimide substrates,” Journal of Applied Physics, vol. 41, no. 23, p. 232004, 2008.Google Scholar
  30. 30.
    C.-M. Leu, Y.-T. Chang, and K.-H. Wei, “Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications,” Chemistry of Materials, vol. 15, no. 19, pp. 3721–3727, 2003.Google Scholar
  31. 31.
    T. Tanaka, G. Montanari, and R. Mulhaupt, “Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications,” IEEE transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 763–784, 2004.Google Scholar
  32. 32.
    P. Rickerl, J. Stephanie, and P. Slota, “Processing of photosensitive polyimides for packaging applications,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 10, no. 4, pp. 690–694, 1987.Google Scholar
  33. 33.
    G. Samuelson, “Polyimide for multilevel very large-scale integration (VLSI),” ACS Publications, 1982.Google Scholar
  34. 34.
    DuPont, “Kapton summary of properties,” 2011. Technical Data Sheet.Google Scholar
  35. 35.
    P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband Terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” Journal of Applied Physics, vol. 109, no. 4, pp. 043505–043505, 2011.Google Scholar
  36. 36.
    M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Applied Physics Letters, vol. 95, no. 25, p. 251107, 2009.Google Scholar
  37. 37.
    S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, “Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. 12, pp. 993–997, 2014.Google Scholar
  38. 38.
    C. E. Zah and D. B. Rutledge, “A polystyrene cap for matching a silicon lens at Millimeter wavelengths,” International Journal of Infrared and Millimeter Waves, vol. 6, no. 9, pp. 909–917, 1985.Google Scholar
  39. 39.
    G. Zhao, M. Ter Mors, T. Wenckebach, and P. C. Planken, “Terahertz dielectric properties of polystyrene foam,” Journal of Optical Society of America, vol. 19, no. 6, pp. 1476–1479, 2002.Google Scholar
  40. 40.
    J. Birch, “The far-infrared optical constants of polypropylene, PTFE and polystyrene,” Infrared physics, vol. 33, no. 1, pp. 33–38, 1992.Google Scholar
  41. 41.
    X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, “Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at Terahertz frequency,” Applied Physics Letters, vol. 96, no. 1, p. 011906, 2010.Google Scholar
  42. 42.
    A. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at Terahertz frequencies,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 7, pp. 264–266, 2000.Google Scholar
  43. 43.
    H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Goltsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at Terahertz frequencies,” Infrared Physics & Technology, vol. 42, no. 1, pp. 41–47, 2001.Google Scholar
  44. 44.
    P. T. C. Inc, “Parylene properties,” 2010. Technical Data Sheet.Google Scholar
  45. 45.
    C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” Mar. 11 1986. US Patent 4,575,330.Google Scholar
  46. 46.
    A. Bertsch and P. Renaud, “Microstereolithography,” in Three-Dimensional Microfabrication Using Two-photon Polymerization, pp. 20–44, Elsevier, 2016.Google Scholar
  47. 47.
    A. Macor, E. De Rijk, S. Alberti, T. Goodman, and J.-P. Ansermet, “Note: Three-dimensional stereolithography for millimeter wave and terahertz applications,” Review of Scientific Instruments, vol. 83, no. 4, p. 046103, 2012.Google Scholar
  48. 48.
    D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Applied Physics Letters, vol. 83, no. 1, pp. 201–203, 2003.Google Scholar
  49. 49.
    A. von Bieren, E. De Rijk, J.-P. Ansermet, and A. Macor, “Monolithic metal-coated plastic components for Mm-wave applications,” IEEE International Conference on Infrared, Millimeter, and Terahertz waves, pp. 1–2, 2014.Google Scholar
  50. 50.
    S. Kirihara, M. Kaneko, and T. Niki, “Terahertz wave control using ceramic photonic crystals with a diamond structure including plane defects fabricated by microstereolithography,” International Journal of Applied Ceramic Technology, vol. 6, no. 1, pp. 41–44, 2009.Google Scholar
  51. 51.
    M. D’Auria, W. J. Otter, J. Hazell, B. T. Gillatt, C. Long-Collins, N. M. Ridler, and S. Lucyszyn, “3-D printed metal-pipe rectangular waveguides,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 5, no. 9, pp. 1339–1349, 2015.Google Scholar
  52. 52.
    Formlabs, “Tough photopolymer resin,” 2017. Technical Data Sheet.Google Scholar
  53. 53.
    O. P. Parida and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” International Conference on Optics and Photonics, pp. 4–7, 2009.Google Scholar
  54. 54.
    DJMicroLaminates, “SUEX epoxy thick film sheets (TDFS),” 2017. Preliminary Data Sheet.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations