Multi-Way Quasi-Optical Waveguide Power Divider with 2D Diffraction Approximation and Experimental Verification at Millimeter Wave

  • Fan Zhang
  • Kaijun SongEmail author
  • Yong Fan


In this paper, multi-way quasi-optical parallel-plate waveguide power dividers/combiners are designed and fabricated using the 2D diffraction approximation. Shape optimization technology is applied to shape the cylindrical reflector surface to reconstruct the diffraction field to improve the magnitude and phase balance of the parallel-plate waveguide power dividers. Both a 1-to-6 way quasi-optical waveguide power divider with H-plane horn antenna array and a 1-to-10 way power divider with gap waveguide transition are analyzed and designed, respectively. We fabricated the two designed power devices at millimeter wave for verifying the validity of the design method. The measured average transmission coefficient of the 1-to-6 way power divider is − 10.8 dB from 81 to 110 GHz, corresponding to 50% power combining efficiency, while the measured back-to-back structure of the 1-to-10 way power divider/combiner features an average transmission coefficient to − 2.83 dB corresponding to 72.2% power combining efficiency over the entire W-band. The proposed power dividers/combiners and the efficient optimization method used in their design are believed to be of importance for future power device applications in millimeter wave and terahertz range.


Power divider/combiner Quasi-optics Diffraction Magnitude and phase balance Shape optimization technology Millimeter wave Terahertz 


Funding Information

The work for this grant was supported in part by National Natural Science Foundation of China (Grant No: 61771094) and by Sichuan Science and Technology Program (Grant No: 2019JDRC0008).


  1. 1.
    T. Kleine-Ostmann, and T. Nagatsuma. “A review on terahertz communications research”, J. Infrared Millim. Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.CrossRefGoogle Scholar
  2. 2.
    M. Mattsson, O. Zeni and M. Simkó. “Is there a biological basis for therapeutic applications of millimetre waves and THz waves?”, J. Infrared Millim. Terahertz Waves, 2018.Google Scholar
  3. 3.
    S. Di Meo, P. F. Espín-López, A. Martellosio, et al. “On the feasibility of breast cancer imaging systems at millimeter-waves frequencies”. IEEE Trans. Microw. Theory Tech. vol. 65, no. 5, pp. 1795–1806, May 2017.CrossRefGoogle Scholar
  4. 4.
    F. Zhang, K. Song, G. Li, and M. Zhao, “Sub-THz four-way waveguide power combiner with low insertion loss”, J. Infrared Millim. Terahertz Waves, vol. 35, no. 5, pp. 451–457, 2014.CrossRefGoogle Scholar
  5. 5.
    G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources”, IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 1, pp. 56–64, Jan. 2014.CrossRefGoogle Scholar
  6. 6.
    P. F. Goldsmith, “Quasioptical Systems:Gaussian Beam Quasioptical Propogation and Applications”, Wiley-IEEE Press, 1998.Google Scholar
  7. 7.
    S.A. Kuznetsov, M.A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar Holographic Metasurfaces for Terahertz Focusing,” Scientific Reports, vol. 5, no. 7738, pp. 1-8, Jan. 2015.Google Scholar
  8. 8.
    K. Song, F. Zhang, S. Hu, and Y. Fan, “Millimetre-wave quasi-optical low-loss power combiner based on dipole antenna,” Electron. Lett., vol. 49, no. 18, pp. 1160–1162. Aug. 2013.CrossRefGoogle Scholar
  9. 9.
    Al Abbas, Emad, and A. M. Abbosh. “Tunable millimeter-wave power divider for future 5G cellular networks,” Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on. IEEE, 2016.Google Scholar
  10. 10.
    M. Aghadjani, M. Erementchouk, and P. Mazumder. “Spoof Surface Plasmon Polariton Beam Splitter,” IEEE Trans. Terahertz Sci. Technol. vol. 6, no. 6, pp. 832–839. Aug. 2016.CrossRefGoogle Scholar
  11. 11.
    K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep., no. 6, pp. 1–6 Jun. 2016.Google Scholar
  12. 12.
    W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C.Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express, vol. 5, no. 12, pp. 2812–2819, Dec. 2015.CrossRefGoogle Scholar
  13. 13.
    R. Maaskant, W. A. Shah, A. U. Zaman, M. Ivashina, and P. S. Kildal, “Spatial Power Combining and Splitting in Gap Waveguide Technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 472–474. July 2016.CrossRefGoogle Scholar
  14. 14.
    T. Dresel, M. Beyerlein, and J. Schwider, “Design and fabrication of computer-generated beam-shaping holograms,” Appl. Opt. vol. 35, no. 23, pp. 4615–4621, Aug. 1996.CrossRefGoogle Scholar
  15. 15.
    M. S. Heimbeck, P. J. Reardon, J. Callahan, and H. O. Everitt, “Transmissive quasi-optical Ronchi phase grating for terahertz frequencies,” Opt. Lett. vol. 35, no. 21, pp. 3658–3660, Nov. 2010.CrossRefGoogle Scholar
  16. 16.
    M. Hoft, “Spatial power/combiner in D-band.” IEEE Trans. Microw. Theory Tech. vol. 52, no. 10, pp. 2379–2384, Oct. 2004.CrossRefGoogle Scholar
  17. 17.
    T. Magath, “Diffraction synthesis and experimental verification of a quasi-optical power splitter at 150GHz,” IEEE Trans. Microw. Theory Tech. vol. 52, no. 10, pp. 2385–2389, Oct. 2004.CrossRefGoogle Scholar
  18. 18.
    T. Magath, R. Judaschke, K. Schunemann, “2-D quasi-optical power combining oscillator array at D-band,” Microwave Symposium Diqest, 2006. IEEE MTT-S International, pp. 634–637, 2006.Google Scholar
  19. 19.
    F. Zhang, K. Song, Y. Fan, “New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters,” Sci. Rep., 7, 41726, 2017.CrossRefGoogle Scholar
  20. 20.
    F. Zhang, K. Song, M. Fan, S. Hu and Y. Fan, “A bionic algorithm based synthesis of shaped reflector for a terahertz quasi-optical power combiner,” In Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016 IEEE MTT-S International Microwave Workshop Series on, pp. 1–3, 2016.Google Scholar
  21. 21.
    F. Zhang, K. Song, Y. Fan, “Real-Coded Genetic Algorithm with Differential Evolution Operator for Terahertz Quasi-Optical Power Divider/Combiner Design”, Applied Computational Electromagnetics Society Journal, vol. 32, no. 10, Oct. 2017.Google Scholar
  22. 22.
    A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sánchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert, “Propagation characteristics of groove gap waveguide below and above cutoff,” IEEE Trans. Microw. Theory Tech. vol. 64, no. 1, pp. 27–36, Jan. 2016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.EHF Key Laboratory of Science, School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations