Advertisement

Dielectric Permittivity of Artificial Crystals Based on Opal Matrices with ZnO Particles in the Millimeter Waveband

  • Ya. A. Pakhomov
  • A. B. Rinkevich
  • Dmitry V. PerovEmail author
  • A. F. Belyanin
  • E. A. Kuznetsov
Article
  • 15 Downloads

Abstract

Dielectric properties of nanocomposites based on opal matrices with ZnO particles are studied. Microwave measurements are carried out in the frequency range from 26 to 38 GHz. Frequency dependences of transmittance and reflection coefficients are obtained. The values of the real and imaginary parts of the complex dielectric permeability are obtained. The X-ray phase analysis of nanocomposites is carried out and their structure is studied. Low temperature magnetic properties of artificial crystals with ZnO particles doped with Mn and Gd in magnetic fields up to 30 kOe are discussed.

Keywords

Opal matrix ZnO Nanocomposite Microwave measurement High-frequency complex permittivity Effective permittivity of nanocomposite material 

Notes

Acknowledgments

The results of section 1 were obtained within the state assignment of FASO of Russia (theme “Function”). The results of section 2 were obtained within the RFBR grant (project No. 18-32-00008). The results of sections 3 and 4 were obtained within the RSF grant (project No. 17-12-01002).

References

  1. 1.
    I. Amenabar, F. Lopez, A. Mendikute, J. Infrared Milli. Terahz. Waves, 34 (2), 152–169 (2013).CrossRefGoogle Scholar
  2. 2.
    T. Arikawa, Q. Zhang, L. Ren, A. Belyanin, J. Kono, J. Infrared Milli. Terahz. Waves, 34 (11), 724–739 (2013).CrossRefGoogle Scholar
  3. 3.
    A. Onodera, M. Takesada, Electronic ferroelectricity in II-VI Semiconductor ZnO (In Advances in Ferroelectrics, Ed. by A.P. Barranco) (Rijeka: InTech Open publisher, 2012).Google Scholar
  4. 4.
    J. Pokharel, M. Shrestha, L.Q. Zhou, V. Neto, Q.H. Fan, J. Coating Science Technol., 2(2), 46–50 (2015).Google Scholar
  5. 5.
    R. Joshi, P. Kumar, A. Gaur, K. Asokan, Appl. Nanoscience, 4 (5), 531–536 (2014).CrossRefGoogle Scholar
  6. 6.
    T. Probst, S. Sommer, A. Soltani, E. Kraus, B. Baudrit, G.E. Town, M. Koch, J. Infrared Milli. Terahz. Waves, 36 (6), 569–577 (2015).CrossRefGoogle Scholar
  7. 7.
    L. Wu, L. Jiang, C. Ding, Q. Sheng, X. Ding, J. Yao, J. Infrared Milli. Terahz. Waves, 36 (1), 1–6 (2015).CrossRefGoogle Scholar
  8. 8.
    A.B. Rinkevich, E.A. Kuznetsov, D.V. Perov, Yu.I. Ryabkov, M.I. Samoylovich, S.M. Klescheva, J. Infrared Milli. Terahz. Waves, 35 (10), 860–870 (2014).CrossRefGoogle Scholar
  9. 9.
    A.B. Rinkevich, E.A. Kuznetsov, D.V. Perov, V. Bovtun, M. Kempa, M. Savinov, M.I. Samoilovich, S.M. Klescheva, Yu.I. Ryabkov, E.V. Tsvetkova. High-Frequency Dielectric Properties of Nanocomposite and Ceramic Titanates // IEEE Trans. Nanotechnol., 14 (3), 585–592 (2015).CrossRefGoogle Scholar
  10. 10.
    M. I. Samoilovich, A. B. Rinkevich, V. Bovtun, A. F. Belyanin, M. Kempa,D. Nuzhnyy, M. Yu. Tsvetkov, S. M. Kleshcheva, Rus. J. Gen. Chem., 83 (11), 2132–2147 (2013).CrossRefGoogle Scholar
  11. 11.
    J. J. Lee, G. Z. Xing, J. B. Yi, T. Chen, M. Ionescu, S. Li, Appl. Phys. Lett., 104, 012405 (2014).CrossRefGoogle Scholar
  12. 12.
    D. D. Wang, G. Z. Xing, F. Yan, Y. S. Yan, S. Li, Appl. Phys. Lett., 104, 022412 (2014).CrossRefGoogle Scholar
  13. 13.
    X. Xue, L. Liu, Z. Wang, Y. Wu, J. Appl. Phys., 115, 033902 (2014)CrossRefGoogle Scholar
  14. 14.
    A.B. Rinkevich, M.I. Samoilovich, S.M. Klescheva, D.V. Perov, A.M. Burkhanov, E.A. Kuznetsov, IEEE Trans. Nanotechnol., 2014, 13 (1), 3–9 (2014).CrossRefGoogle Scholar
  15. 15.
    A.B. Rinkevich, M. Pardavi-Horvath, M. Samoylovich, D.V. Perov, IEEE Trans. Magn., 52 (6), 2300410 (2016).CrossRefGoogle Scholar
  16. 16.
    T.S. Sasikala, M.T. Sebastian, J. Electr. Mater., 45(1), 729–735 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Jayasundere, B.V. Smith, J. Appl. Phys., 73, 2462 (1993).CrossRefGoogle Scholar
  18. 18.
    K. Wakino, T. Okada, N. Yoshida, K. Tomono. J. Am. Ceram. Soc., 76, 2588 (1993).CrossRefGoogle Scholar
  19. 19.
    Y. Rao, J.M. Qu, T. Marinis, C.P. Wong, IEEE Trans. Compon. Packag. Technol., 23, 680 (2000).CrossRefGoogle Scholar
  20. 20.
    A. B. Rinkevich, D. V. Perov, Ya A. Pakhomov, M. I. Samoylovich, E. A. Kuznetsov, J. Infrared Milli. Terahz. Waves, 37 (11), 1124–1138 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.M.N. Miheev Institute of Metal Physics Ural Branch of RASEkaterinburgRussia
  2. 2.Central Research Technological Institute “TECHNOMASH”MoscowRussia
  3. 3.The Russian State Vocational Pedagogical UniversityEkaterinburgRussian Federation

Personalised recommendations