Advertisement

Computer-Controlled Test System for the Excitation of Very High-Order Modes in Highly Oversized Waveguides

  • T. RuessEmail author
  • K. A. Avramidis
  • G. Gantenbein
  • Z. Ioannidis
  • S. Illy
  • F.-C. Lutz
  • A. Marek
  • S. Ruess
  • T. Rzesnicki
  • M. Thumm
  • D. Wagner
  • J. Weggen
  • J. Jelonnek
Article
  • 115 Downloads

Abstract

The generation of a specific high-order mode with excellent mode purity in a highly oversized cylindrical waveguide is mandatorily required for the verification of high-power components at sub-THz frequencies. An example is the verification of quasi-optical mode conversion and output systems for fusion gyrotrons. A rotating high-order mode can be excited by taking a low-power RF source (e.g. RF network analyser) and by injecting the RF power via a horn antenna into a specific adjustable quasi-optical setup, the so-called mode generator. The manual adjustment of the mode generator is typically very time-consuming. An automatized adjustment using intelligent algorithms can solve this problem. In the present work, the intelligent algorithms consist of five different mode evaluation techniques to determine the azimuthal and radial mode indices, the quality factor, the scalar mode content and the amount of the counter-rotating mode. Here, the implemented algorithms, the design of the computer-controlled mechanical adjustment and test results are presented. The new system is benchmarked using an existing TE28,8 mode cavity operating at 140 GHz. In addition, the repeatability of the algorithms has been proven by measuring a newly designed TE28,10 mode generator cavity. Using the described advanced mode generator system, the quality of the excited modes has been significantly improved and the time for the proper adjustment has been reduced by at least a factor of 10.

Keywords

Low-power measurement Quasi-optical mode generator High-order modes Automated measurement setup Mode evaluation techniques Gyrotron Fusion plasmas 

Notes

References

  1. 1.
    A. Sawant, et al., Scientific Reports, vol. 7, no.: 3372 (2017)Google Scholar
  2. 2.
    T. Omori, et al., Fusion Eng. Des., vol. 86, pp. 951–954, 2011.CrossRefGoogle Scholar
  3. 3.
    T. Rzesnicki, et al., Trans. On Plasma Science, vol. 38, no. 6, pp. 1141–1149, 2010.CrossRefGoogle Scholar
  4. 4.
    T. Ruess, et al., EPJ Web Conf., vol. 187 (2018).Google Scholar
  5. 5.
    N. Aleksandrov, et al., Int. J. Infrared and Millimeter Waves, 13, 1369–1385, 1992.CrossRefGoogle Scholar
  6. 6.
    D. Wagner, et al., Int. J. Infrared and Millimeter Waves 19,185–194 (1998).CrossRefGoogle Scholar
  7. 7.
    C. T. Iatrou, et al., IEEE Trans. Microwave Theory Tech., vol. 44, pp. 56–64, 1996.CrossRefGoogle Scholar
  8. 8.
    K. A. Avramides, et al., IEEE Trans. on Plasma Science, vol. 32, no. 3, 2004.Google Scholar
  9. 9.
    M. Pereyaslavets, et al., Int. J. Electronics, 82:1, pp. 107–115, 1997.CrossRefGoogle Scholar
  10. 10.
    M. Losert, J. Jin and T. Rzesnicki, in IEEE Trans. on Plasma Science, vol. 41, no. 3, pp. 628–632, March 2013.Google Scholar
  11. 11.
    T. Ruess, et al., EPJ Web Conf., (2018).Google Scholar
  12. 12.
    M. Losert, et al., 2015 German Microwave Conference, Nuernberg, 2015, pp. 256–259.Google Scholar
  13. 13.
    A. Arnold, G. Dammertz and M. Thumm, IRMMW, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004., 2004, pp. 671–672.Google Scholar
  14. 14.
    H. Braune, et al, in Proc. IRMMW, Copenhagen, Denmark, Sep. 2016, pp. 1–2.Google Scholar
  15. 15.
    K. A. Avramidis, et al., 20th Joint Workshop on Electron Cyclotron Emission (ECE) and Electron Cyclotron Resonance Heating (ECRH), May 2018, Greifswald, Germany.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. Ruess
    • 1
    Email author
  • K. A. Avramidis
    • 1
  • G. Gantenbein
    • 1
  • Z. Ioannidis
    • 1
  • S. Illy
    • 1
  • F.-C. Lutz
    • 1
  • A. Marek
    • 1
  • S. Ruess
    • 1
    • 2
  • T. Rzesnicki
    • 1
  • M. Thumm
    • 1
    • 2
  • D. Wagner
    • 3
  • J. Weggen
    • 1
  • J. Jelonnek
    • 1
    • 2
  1. 1.IHMKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.IHEKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Max Planck Institute for Plasma PhysicsGarchingGermany

Personalised recommendations