Advertisement

Investigation of Keratinizing Squamous Cell Carcinoma of the Tongue Using Terahertz Reflection Imaging

  • Young Bin Ji
  • Jung Min Kim
  • Young Han Lee
  • Yuna Choi
  • Da Hee Kim
  • Yong-Min Huh
  • Seung Jae OhEmail author
  • Yoon Woo KohEmail author
  • Jin-Suck SuhEmail author
Article
  • 131 Downloads

Abstract

We investigated the feasibility of using terahertz (THz) reflection imaging to detect keratinizing squamous cell carcinoma (SCC) of the tongue. Four fresh keratinizing SCC tissues were studied, which had been surgically resected. All of the keratinizing SCCs were well distinguished from normal healthy tissues. We showed that the tumor regions exhibited low THz reflection despite having higher water content than normal regions. The refractive indices and absorption coefficients were low in the tumor tissues despite the relatively high water content. Our results showed that there were dominant factors such as keratin pearls, other than the water content affecting the THz reflection signal.

Keywords

Terahertz imaging Medical and biological imaging Terahertz spectroscopy Tissue diagnostics Optical diagnostics for medicine 

Notes

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (2016R1D1A1B03933168, NRF-2017R1A2B1010381); Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health & Welfare, Republic of Korea (HI16C0179); Technology Innovation Program funded By the Ministry of Trade, industry & Energy (MI, Korea) (10060136); KIST intramural funding grant (2E27270).

Compliance with Ethical Standards

The Institutional Review Board and Hospital Research Ethics Committee of Severance Hospital approved our study protocol. All patients involved in the study provided written, informed consent for inclusion in the study

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging”, Trends Biotechnol. 34(10), 810–824 (2016).CrossRefGoogle Scholar
  2. 2.
    R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” J. Invest. Dermatol. 120(1), 72–78 (2003).CrossRefGoogle Scholar
  3. 3.
    V.P. Wallace, A.J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D.D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151(2), 424–432 (2004).CrossRefGoogle Scholar
  4. 4.
    A. J. Fitzgerald , V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).CrossRefGoogle Scholar
  5. 5.
    P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).CrossRefGoogle Scholar
  6. 6.
    C. B. Reid, A. Fitzgerald, G. Reese, R. Goldin, P. Tekkis, P. S. O’Kelly, E. Pickwell-MacPherson, A. P. Gibson, and V. P. Wallace, “Terahertz pulsed imaging of freshly excised human colonic tissues,” Phys. Med. Biol. 56(14), 4333–4353 (2011).CrossRefGoogle Scholar
  7. 7.
    L. H. Eadie, C. B. Reid, A. J. Fitzgerald, and V. P. Wallace, “Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis,” Expert Syst. Appl. 40(6), 2043–2050 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. C. Sim, J. Y. Park, K.-M. Ahn, C. S. Park, and J.-H. Son, “Terahertz imaging of excised oral cancer at frozen temperature,” Biomed. Opt. Express, 4(8), 1413–1421 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. B. Ji, C. H. Park, H. Kim, S.-H. Kim, G. M. Lee, S. K. Noh, T.-I. Jeon, J.-H. Son, Y.-M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J.-S. Suh, “Feasibility of terahertz reflectometry for discrimination of human early gastric cancers,” Biomed. Opt. Express 6(4), 1398–1406 (2015).CrossRefGoogle Scholar
  10. 10.
    D. Hou, X. Li, J. Cai, Y. Ma, X. Kang, P. Huang, and G. Zhang, “Terahertz spectroscopic investigation of human gastric normal and tumor tissues,” Phys. Med. Biol. 59(18), 5423–5440 (2014).CrossRefGoogle Scholar
  11. 11.
    S. J. Oh, S.-H. Kim, Y. B. Ji, K. Y. Jeong, Y. J. Park, J. M, Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express, 5(8), 2837–2842 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. B. Ji, S. J. Oh, S.-G Kang, J. Heo, S.-H. Kim, Y. Choi, S. Song, H. Y. Son, S. H. Kim, J. H. Lee, S. J. Haam, Y. M. Huh, J. H. Chang, C. joo, and J.-S Suh, “Terahertz reflectometry imaging for low and high grade gliomas,” Sci. Rep. 6, 36040 (2016).CrossRefGoogle Scholar
  13. 13.
    E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Hovik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue.” Int. J. Radiat. Biol. 65, 387–401 (1994).CrossRefGoogle Scholar
  14. 14.
    K. F. Ross, and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry nuclear magnetic resonance”, J. Micros. 128, 7–21 (1982).CrossRefGoogle Scholar
  15. 15.
    Y. B. Ji, E. S. Lee, S.-H. Kim, J-H. Son, and T.-I. Jeon, “A miniaturized fiber-coupled terahertz endoscope system,” Opt. Express, 17(19), 17082–17087 (2009).CrossRefGoogle Scholar
  16. 16.
    Y. B. Ji, S.-H. Kim, K. Jeong, Y. Choi, J-H. Son, D. W. Park, S. K. Noh, T.-I. Jeon, Y.-M. Huh, S. Haam, S. K. Lee, S. J. Oh, and J.-S. Suh, “Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model,” Biomed. Opt. Express, 5(12), 4162–4170 (2014).CrossRefGoogle Scholar
  17. 17.
    J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, “Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues,” Technol. Cancer Res. Treat. 3(5), 491–497 (2004).CrossRefGoogle Scholar
  18. 18.
    S. Sy, S. Huang, Y.-X. j. Wang, J. Yu, A. T. Ahuja, Y.-T. Zhang, and E. Pickwell-MacPherson, “Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast,” Phys. Med. Biol. 55, 7587–7596 (2010).CrossRefGoogle Scholar
  19. 19.
    K. D. Shield, J. Ferlay, A. Jemal, R. Sankaranarayanan, A. K. Chaturvedi, F. Bray, and I. Soerjomataram, “The Global Incidence of Lip, Oral Cavity, and Pharyngeal Cancers by Subsite in 2012,” Ca. Cancer J. Clin. 67, 51–64 (2017).CrossRefGoogle Scholar
  20. 20.
    T. K. Chung, E. L. Rosenthal, J. S. Magnuson, and W. R. Carroll, “Transoral Robotic Surgery for Oropharyngeal and Tongue Cancer in the United States,” Laryngoscope, 125(1), 140–145 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Wang, W. Wang, J. Li, L. Wu, M. Song, and Q. Meng, “miR182 activates the Ras–MEK–ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1,” Onco. Targets Ther. 10, 667–679 (2017).CrossRefGoogle Scholar
  22. 22.
    M. Amit, T. C. Yen, C. T. Liao, P. Chaturvedi, J.P. Agarwal, L. P. Kowalski, A. Ebrahimi, J.R. Clark, M. Kreppel, J. Zöller, E. Fridman, V.A. Bolzoni, J. P. Shah, Y. Binenbaum, S. G. Patel, Z. Gil and International Consortium for Outcome Research (ICOR) in Head and Neck Cancer, “Improvement in survival of patients with oral cavity squamous cell carcinoma: An international collaborative study,” Cancer, 119(24), 4242–4248 (2013).Google Scholar
  23. 23.
    E. M. Barroso, R. W. H. Smits, T. C. Bakker Schut, I. T. Hove, J. A. Hardillo, E. B. Wolvius, R. J. Baatenburg de Hong, S. Koljenovic, and G. J. Puppels, “Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy,” Anal. Chem. 87, 2419–2426 (2015).CrossRefGoogle Scholar
  24. 24.
    J. A. McGrath, R. A. J. Eady, and F. M. Pope, “Anatomy and organization of human skin,” in Rook’s Textbook of Dermatology, Seventh Edition, T. Burns, S. Breathnach, N. Cox and C. Griffiths, ed. (Blackwell Publishing, 2004).Google Scholar
  25. 25.
    J. L. Bolognia, J. L. Jorizzo, J. V. Schaffer, Dermatology 3rd, 1, 107–108, Elsevier, (2012).Google Scholar
  26. 26.
    M. Ney and I. Abdulhalim, “Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region,” J. Biomed. Opt. 16(6), 067006 (2011).CrossRefGoogle Scholar
  27. 27.
    M.M. Nazarov, A.P. Shkurinov, E.A. Kuleshov, V.V. Tuchin “Terahertz time-domain spectroscopy of biological tissues” Quantum Electronics 38 (7), 647–654 (2008)CrossRefGoogle Scholar
  28. 28.
    V. A. Guseva, S. I. Gusev, P. S. Demchenko, E. A. Sedykh, and M. K. Khodzitsky, “Optical properties of human nails in THz frequency range”, J of Biomedical Photonics & Eng 2(4), 040306–1–5 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.YUHS-KRIBB Medical Convergence Research InstituteYonsei University College of MedicineSeoulSouth Korea
  2. 2.Gimhae Biomedical CenterGimhae Industry Promotion & Biomedical FoundationGimhaeSouth Korea
  3. 3.Department of Otorhinolaryngology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea
  4. 4.Department of Radiology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations