Generation of Electromagnetic Rogue-Waves in Submillimeter-Band Gyrotrons

  • R. M. RozentalEmail author
  • I. V. Zotova
  • N. S. Ginzburg
  • A. S. Sergeev
  • V. P. Tarakanov


Rogue-waves in gyrotrons represent sporadically emitted ultrashort electromagnetic pulses with intensities significantly greater than the average radiation power and, in optimal conditions, higher than the power of the driving electron beams. In this paper within the framework of the average approach and direct 3D PIC (particle-in-cell) simulations, we study the possibility of rogue wave generation in submillimeter-band gyrotrons operating at high-order modes. It is demonstrated that in a 500 GHz fundamental cyclotron harmonic gyrotron excited by the 30 kV/50 A helical electron beam the peak power of generated picosecond electromagnetic spikes at TE61 mode can reach 5 MW that more than three times exceeds the power of the driving beam.


Gyrotron Submillimeter-wave radiation Rogue waves 



The authors are grateful to Prof. V.N. Manuilov for helpful discussions.

Funding Information

This work was supported by the Russian Foundation for Basic Research (RFBR) (project No. 17-08-01077).


  1. 1.
    Extreme Ocean Waves, Ed. by E. Pelinovsky, C. Kharif. – Springer Science+Business Media B.V., 2008.Google Scholar
  2. 2.
    M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F.T. Arecchi, Phys. Rep. 528, 47 (2013).MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Akhmediev, B. Kibler, F. Baronio, et al, J. Opt. 8, 063001 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Residori, M. Onorato, U. Bortolozzo, F.T. Arecchi, Contemp. Phys. 17, 53 (2017).CrossRefGoogle Scholar
  5. 5.
    N. S. Ginzburg, R. M. Rozental, A. S. Sergeev, A. E. Fedotov, I. V. Zotova, V. P. Tarakanov, Phys. Rev. Lett. 119, 034801 (2017).CrossRefGoogle Scholar
  6. 6.
    M.I. Petelin, THz Sci. Tech. 8, 157 (2015).Google Scholar
  7. 7.
    M. Thumm, KIT Sci. Rep. 7750 (2018).Google Scholar
  8. 8.
    N.S. Ginzburg , G.S. Nusinovich, and N.A. Zavolsky, Int. J. Electron. 61, 881 (1986).CrossRefGoogle Scholar
  9. 9.
    M.A. Moiseev, L.L. Nemirovskaya, V.E. Zapevalov, N.A. Zavolsky, Int. J. Infrared Milli. Waves 18, 2117 (1997).CrossRefGoogle Scholar
  10. 10.
    M. I. Airila, O. Dumbrajs, A. Reinfelds, U. Strautins, Phys. Plasmas 8, 4608 (2001).CrossRefGoogle Scholar
  11. 11.
    N.S. Ginzburg, A.S. Sergeev, and I.V. Zotova, Phys. Plasmas 22, 033101 (2015).CrossRefGoogle Scholar
  12. 12.
    O. Dumbrajs, H. Kalis, Phys. Plasmas, 22, 053113 (2015).CrossRefGoogle Scholar
  13. 13.
    R.M. Rozental, N.S. Ginzburg, A.S. Sergeev, I.V. Zotova, A.E. Fedotov and V.P. Tarakanov, Tech. Phys. 62, 1562 (2017).CrossRefGoogle Scholar
  14. 14.
    R.M. Rozental, N.S. Ginzburg, I.V. Zotova, A.S. Sergeev, V.P. Tarakanov, Tech. Phys. Lett. 43, 831 (2017).CrossRefGoogle Scholar
  15. 15.
    S. D. Korovin, A. A. Eltchaninov, V. V. Rostov, V. G. Shpak, M. I. Yalandin, N. S. Ginzburg, A. S. Sergeev, and I. V. Zotova, Phys. Rev. E 74, 016501 (2006).CrossRefGoogle Scholar
  16. 16.
    Sh. E. Tsimring, Int. J. Infrared Millim. Waves. 14, 817 (1993).CrossRefGoogle Scholar
  17. 17.
    A. L. Goldenberg, M. Yu. Glyavin, N. A. Zavolsky, V. N. Manuilov, Radiophys. Quant. Electron. 48, 741 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Yu. Glyavin, A. L. Goldenberg, V. N. Manuilov, M. V. Morozkin, Radiophys. Quant. Electron. 54, 622 (2012).CrossRefGoogle Scholar
  19. 19.
    V. P. Tarakanov, EPJ Web of Conferences 149, 04024 (2017).CrossRefGoogle Scholar
  20. 20.
    T. Idehara, I. Ogawa, H. Mori, S. Kobayashi, S. Mitsudo, T. Saito, J. Plasma Fusion Res. Series 8, 1508 (2009).Google Scholar
  21. 21.
    M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).CrossRefGoogle Scholar
  22. 22.
    M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R.Pu, Appl. Phys. Lett. 101, 153503 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Moscow Engineering Physics InstituteMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations