Electro-Optic Sampling of Terahertz Waves Under Brewster’s Angle

  • Claudia GoyEmail author
  • André Ludwig
  • Sangam Chatterjee
  • Maik Scheller


We investigate the angular dependence of electro-optic sampling of terahertz radiation. We show that a non-perpendicular incident of copropagating terahertz and optical waves onto the electro-optic crystal only weakly influences the resulting electro-optic sensing efficacity while strongly reduces disturbing multiple reflections within the crystal. We found that close to Brewster’s angle, the detectors response is most favorable. Experimental data support our theoretical discussion.


Spectroscopy Terahertz Electro-optic sampling Fabry-Pérot 


  1. 1.
    L. Duvillaret, F. Garet, J.-L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996).CrossRefGoogle Scholar
  2. 2.
    T.D. Dorney, R.G. Baraniuk, D.M. Mittleman, J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1562–71 (2001).CrossRefGoogle Scholar
  3. 3.
    M. Scheller, M. Koch, J. Infrared, Millimeter. Terahertz Waves 30, 762–769 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Krüger, S. Funkner, E. Bründermann, M. Havenith, J. Infrared, Millimeter. Terahertz Waves 32, 699–715 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Scheller, J. Infrared, Millimeter. Terahertz Waves 35, 638–648 (2014).CrossRefGoogle Scholar
  6. 6.
    N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, M. Koch. Polym. Test. 28, 30–35 (2009).CrossRefGoogle Scholar
  7. 7.
    Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, M.C. Kemp. Appl. Phys. Lett. 86, 241116 (2005).CrossRefGoogle Scholar
  8. 8.
    P.C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S.E. Pinder, A.D. Purushotham, M. Pepper, V.P. Wallace, Opt. Express 17, 12444 (2009).CrossRefGoogle Scholar
  9. 9.
    R.J. Falconer, A.G. Markelz, J. Infrared, Millimeter. Terahertz Waves 33, 973–988 (2012).CrossRefGoogle Scholar
  10. 10.
    K.A. Niessen, M. Xu, A. Paciaroni, A. Orecchini, E.H. Snell, A.G. Markelz. Biophys. J. 112, 933–942 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Han, W. Zhang, W. Chen, L. Thamizhmani, A.K. Azad, Z. Zhu, J. Phys. Chem. B 110, 1989–93 (2006).CrossRefGoogle Scholar
  12. 12.
    D.M. Mittleman, J. Cunningham, M.C. Nuss, M. Geva. Appl. Phys. Lett. 71, 16 (1997).CrossRefGoogle Scholar
  13. 13.
    Z. Mics, F. Kadlec, P. Kuzel, P. Jungwirth, S.E. Bradforth, V.A. Apkarian. J. Chem. Phys. 123, 104310 (2005).CrossRefGoogle Scholar
  14. 14.
    D.M. Mittleman, R.H. Jacobsen, R. Neelamani, R.G. Baraniuk, M.C. Nuss. Appl. Phys. B Lasers Opt. 67, 379–390 (1998).CrossRefGoogle Scholar
  15. 15.
    M. Kato, S.R. Tripathi, K. Murate, K. Imayama, K. Kawase. Opt. Express 24, 6425 (2016).CrossRefGoogle Scholar
  16. 16.
    M.R. Leahy-Hoppa, M.J. Fitch, X. Zheng, L.M. Hayden, R. Osiander, Chem. Phys. Lett. 434, 227–230 (2007).CrossRefGoogle Scholar
  17. 17.
    A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham. Mater. Today 11, 18–26 (2008).CrossRefGoogle Scholar
  18. 18.
    W. Ghann, J. Uddin, in: Terahertz Spectrosc. - A Cut. Edge Technol.. InTech, 2017.Google Scholar
  19. 19.
    D.H. Auston, K.P. Cheung, P.R. Smith. Appl. Phys. Lett. 45, 284 (1984).CrossRefGoogle Scholar
  20. 20.
    S.-G. Park, M.R. Melloch, A.M. Weiner. Appl. Phys. Lett. 73, 3184 (1998).CrossRefGoogle Scholar
  21. 21.
    S. Matsuura, M. Tani, K. Sakai. Appl. Phys. Lett. 70, 559 (1997).CrossRefGoogle Scholar
  22. 22.
    R.J.B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, M. Schell. Opt. Lett. 22, 19411–19422 (2014).Google Scholar
  23. 23.
    Q. Wu, X.-C. Zhang. Appl. Phys. Lett. 67, 3523 (1995).CrossRefGoogle Scholar
  24. 24.
    Q. Wu, M. Litz, X.-C. Zhang. Appl. Phys. Lett. 68, 2924–2926 (1996).CrossRefGoogle Scholar
  25. 25.
    Q. Wu, X.-C. Zhang. Appl. Phys. Lett. 70, 1784 (1997).CrossRefGoogle Scholar
  26. 26.
    A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox. Appl. Phys. Lett. 74, 1516–1518 (1999).CrossRefGoogle Scholar
  27. 27.
    W. Withayachumnankul, B. Ferguson, T. Rainsford, S. Mickan, D. Abbott, Fluct. Noise Lett. 06, L227–L239 (2006).CrossRefGoogle Scholar
  28. 28.
    M. Bernier, F. Garet, J.L. Coutaz, H. Minamide, A. Sato, IEEE Trans. Terahertz Sci. Technol. 6, 442–450 (2016).CrossRefGoogle Scholar
  29. 29.
    P.C.M. Planken, H.-K. Nienhuys, H.J. Bakker, T. Wenckebach. J. Opt. Soc. Am. B 18, 313 (2001).CrossRefGoogle Scholar
  30. 30.
    L. Duvillaret, S. Railland, J. Coutaz. J. Opt. Soc. Am. B 19, 2704–2715 (2002).CrossRefGoogle Scholar
  31. 31.
    D.T.F. Marple. J. Appl. Phys. 35, 539 (1964).CrossRefGoogle Scholar
  32. 32.
    G. Gallot, J. Zhang, R.W. McGowan, T.-I. Jeon, D. Grischkowsky. Appl. Phys. Lett. 74, 3450 (1999).CrossRefGoogle Scholar
  33. 33.
    B. Ewers, N.S. Köster, R. Woscholski, M. Koch, S. Chatterjee, G. Khitrova, H.M. Gibbs, A.C. Klettke, M. Kira, S.W. Koch. Phys. Rev. B 85, 075307 (2012).CrossRefGoogle Scholar
  34. 34.
    L.L. Sánchez-Soto, J.J. Monzón, G. Leuchs. Eur. J. Phys. 37, (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikPhilipps-University MarburgMarburgGermany
  2. 2.Institute of Nuclear PhysicsJ. W. Goethe-University Frankfurt (M)FrankfurtGermany
  3. 3.Institute of Experimental Physics IJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations