Advertisement

Optical and Electrical Characterization of Pure PMMA for Terahertz Wide-band Metamaterial Absorbers

  • Zaiying Shi
  • Lixin Song
  • Tao Zhang
Article
  • 79 Downloads

Abstract

The characteristics of relative permittivity and reflectance for poly (methyl methacrylate) (PMMA) films prepared by spin-coating were investigated and an excellent wideband terahertz (THz) metamaterial absorber (MA) had been fabricated by employing PMMA film as the dielectric layer. XRD and AFM indicated that all the PMMA films with thicknesses from 11 to 17 μm were amorphous and extremely smooth with roughness about 0.203 nm. Raman results demonstrated that vibration strength of the same covalent bonds tends to be consistent with an increase in film thickness. The dual beam laser interferometer (DBLI) was employed to study the influence of applied frequency and thickness on the relative permittivity, and the results exhibited dielectric constants increased from 2.88 to 4.04 with the thickness increasing from 9 to 14 μm. And the dielectric constants for PMMA films with a certain thickness (8 μm) gradually declined when the applied frequency increased from 100 to 105 Hz; besides, the dielectric constant in THz band was forecasted approximately 2.5. The terahertz time domain spectrometer (THz-TDS) results revealed that the THz reflectance was of gradual degradation from 80 to 58% at 3.2 THz, as the thickness increased from 11 to 17 μm. In addition, the UV-VIS spectrum showed that thickness had little effect on reflectance and transmittance in visible region, leading to the almost same Eg (energy gap) about 3.7 eV. At last, by employing PMMA film as the dielectric layer, a highly wideband metamaterial absorber with absorption > 80% from 4.1 to 7.4 THz was fabricated.

Keywords

PMMA Terahertz Permittivity Reflectance Metamaterial absorber 

References

  1. 1.
    M. Alibakhshi-Kenari, M. Naser-Moghadasi, B.S. Virdee, A. Andujar, J. Anguera, Compact antenna based on a composite right/left-handed transmission line. Microwave and Optical Technology Letters, 57 (2015) 1785–1788.CrossRefGoogle Scholar
  2. 2.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science, 314 (2006) 977–980.CrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, Negative refraction makes a perfect lens. Physical Review Letters, 85 (2000) 3966–3969.CrossRefGoogle Scholar
  4. 4.
    R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science, 292 (2001) 77–79.CrossRefGoogle Scholar
  5. 5.
    M. Alibakhshikenari, B.S. Virdee, A. Ali, E. Limiti, Extended Aperture Miniature Antenna Based on CRLH Metamaterials for Wireless Communication Systems Operating Over UHF to C-Band. Radio Science, 53 (2018) 154–165.CrossRefGoogle Scholar
  6. 6.
    M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, B.S. Virdee, E. Limiti, Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications. Aeu-International Journal of Electronics and Communications, 70 (2016) 1645–1650.CrossRefGoogle Scholar
  7. 7.
    M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, Composite right-left-handed-based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers. Iet Microwaves Antennas & Propagation, 9 (2015) 1713–1726.CrossRefGoogle Scholar
  8. 8.
    A. Noor, Z. Hu, Study of Wideband, Wide Angle, Polarization Independent Metamaterial Hilbert Curve Absorbing Screen for Terahertz Bolometers. Journal of Infrared Millimeter and Terahertz Waves, 31 (2010) 791–798.CrossRefGoogle Scholar
  9. 9.
    F. Alves, D. Grbovic, G. Karunasiri, Investigation of MEMS bi-material sensors with metamaterial absorbers for THz imaging, in: T. George, M.S. Islam, A.K. Dutta (Eds.) Micro- and Nanotechnology Sensors, Systems, and Applications Vi2014.Google Scholar
  10. 10.
    B.X. Wang, G.Z. Wang, T. Sang, Simple design of novel triple-band terahertz metamaterial absorber for sensing application. Journal of Physics D-Applied Physics, 49 (2016) 7.Google Scholar
  11. 11.
    S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stoehr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, The 2017 terahertz science and technology roadmap. Journal of Physics D-Applied Physics, 50 (2017) 043001 (49pp).  https://doi.org/10.1088/1361-6463/50/4/043001.
  12. 12.
    M. Nasr, J.T. Richard, S.A. Skirlo, M.S. Heimbeck, J.D. Joannopoulos, M. Soljacic, H.O. Everitt, Narrowband Metamaterial Absorber for Terahertz Secure Labeling. Journal of Infrared Millimeter and Terahertz Waves, 38 (2017) 1120–1129.CrossRefGoogle Scholar
  13. 13.
    X. Yan, L.-J. Liang, X. Ding, J.-Q. Yaoa, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Optical Engineering, 56 (2017) 027104 (6pp).  https://doi.org/10.1117/1.oe.56.2.027104.
  14. 14.
    G. Deng, J. Yang, Z. Yin, Broadband terahertz metamaterial absorber based on tantalum nitride. Applied Optics, 56 (2017) 2449–2454.CrossRefGoogle Scholar
  15. 15.
    C. Feng, F. Shi, J. Shao, Q. Li, H. Yu, Pneumatically Actuated Tunable Terahertz Metamaterial Absorber With Dual-Side Tuning Capability. Ieee Photonics Journal, 9 (2017) 1–9.  https://doi.org/10.1109/jphot.2017.2713805.
  16. 16.
    B.-X. Wang, G.-Z. Wang, X. Zhai, L.-L. Wang, Polarization Tunable Terahertz Metamaterial Absorber. Ieee Photonics Journal, 7 (2015).  https://doi.org/10.1109/jphot.2015.2448718.
  17. 17.
    R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, W. Zhang, Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics, 118 (2015) 083103 (6pp).  https://doi.org/10.1063/1.4929449.
  18. 18.
    S.T. Bui, X.K. Bui, T.T. Nguyen, P. Lievens, Y. Lee, D.L. Vu, Thermally tunable magnetic metamaterials at THz frequencies. Journal of Optics, 15 (2013) 075101.CrossRefGoogle Scholar
  19. 19.
    S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, High-performance terahertz wave absorbers made of silicon-based metamaterials. Applied Physics Letters, 107 (2015) 073903 (5pp).  https://doi.org/10.1063/1.4929151.
  20. 20.
    X. Zhao, K. Fan, J. Zhang, H.R. Seren, G.D. Metcalfe, M. Wraback, R.D. Averitt, X. Zhang, Optically tunable metamaterial perfect absorber on highly flexible substrate. Sensors and Actuators a-Physical, 231 (2015) 74–80.CrossRefGoogle Scholar
  21. 21.
    X. Zhao, J. Zhang, K. Fan, G. Duan, G.D. Metcalfe, M. Wraback, X. Zhang, R.D. Averitt, Nonlinear terahertz metamaterial perfect absorbers using GaAs Invited. Photonics Research, 4 (2016) A16-A21.CrossRefGoogle Scholar
  22. 22.
    W. Wang, K. Wang, Z. Yang, J. Liu, Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. Journal of Physics D-Applied Physics, 50 (2017) 135108 (7pp).  https://doi.org/10.1088/1361-6463/aa5e8b.
  23. 23.
    S.K.P. Hussan, M.S. Thayyil, S.K. Deshpande, T.V. Jinitha, J. Kolte, Development of ion conducting ionic liquid-based gel polymer electrolyte membrane PMMA/BMPyr.TFSI - With improved electrical, optical, thermal and structural properties. Solid State Ionics, 310 (2017) 166–175.CrossRefGoogle Scholar
  24. 24.
    S. Sathish, B.C. Shekar, Preparation and characterization of nano scale PMMA thin films. Indian Journal of Pure & Applied Physics, 52 (2014) 64–67.Google Scholar
  25. 25.
    T. Coan, G.S. Barroso, R.A.F. Machado, F.S. de Souza, A. Spinelli, G. Motz, A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Progress in Organic Coating, 89 (2015) 220–230.CrossRefGoogle Scholar
  26. 26.
    M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE, 95 (2007) 1658–1665.CrossRefGoogle Scholar
  27. 27.
    E.V. Fedulova, M.M. Nazarov, A.A. Angeluts, M.S. Kitai, V.I. Sokolov, A.P. Shkurinov, Studying of dielectric properties of polymers in the terahertz frequency range, in: V.V. Tuchin, E.A. Genina, I.V. Meglinski (Eds.) Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine Xiii 2012.Google Scholar
  28. 28.
    H. Xia, R. Yang, H. Li, Q. Zhang, X. Wang, l. Wei, Raman spectrum analysis of phase separation behavior of PS/PMMA blend films. Journal of Yili Normal University, Journal of Yili Normal University, 10(4) (2016) 19–24.Google Scholar
  29. 29.
    K. Darowicki, M. Szocinski, K. Schaefer, D.J. Mills, Investigation of morphological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studies. Progress in Organic Coating, 71 (2011) 65–71.CrossRefGoogle Scholar
  30. 30.
    F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, J. Li, Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Optics Communication, 332 (2014) 321–326.CrossRefGoogle Scholar
  31. 31.
    F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, X. Pan, Design of a polarization insensitive multiband terahertz metamaterial absorber. Journal of Physics D-Applied Physics, 46 (2013) 195103 (8pp).  https://doi.org/10.1088/0022-3727/46/19/195103.
  32. 32.
    W. Pan, X. Yu, J. Zhang, W. Zeng, A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings. Ieee Journal of Quantum Electronics, 53 (2017).  https://doi.org/10.1109/jqe.2016.2643279.
  33. 33.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical Review, 83 (1951) 121–124.CrossRefGoogle Scholar
  34. 34.
    A. Das, A.K. Chikkala, G.P. Bharti, R.R. Behera, R.S. Mamilla, A. Khare, P. Dobbidi, Effect of thickness on optical and microwave dielectric properties of Hydroxyapatite films deposited by RF magnetron sputtering. Journal of Alloys and Compounds, 739 (2018) 729–736.CrossRefGoogle Scholar
  35. 35.
    V. Ion, F. Craciun, N.D. Scarisoreanu, A. Moldovan, A. Andrei, R. Birjega, C. Ghica, F. Di Pietrantonio, D. Cannata, M. Benetti, M. Dinescu, Impact of thickness variation on structural, dielectric and piezoelectric properties of (Ba, Ca) (Ti, Zr) O-3 epitaxial thin films. Scientific Reports, 8 (2018) 8:2056.  https://doi.org/10.1038/s41598-018-20149-y.
  36. 36.
    H.M. Zidan, M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B-Condensed Matter, 355 (2005) 308–317.CrossRefGoogle Scholar
  37. 37.
    M. Ghasemi, P.K. Choudhury, M.A. Baqir, M.A. Mohamed, A.R.M. Zain, B.Y. Majlis, Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films. Journal of Nanophotonics, 11 (2017) 043505 (10pp).  https://doi.org/10.1117/1.jnp.11.043505.
  38. 38.
    G. Shen, M. Zhang, Y. Ji, W. Huang, H. Yu, J. Shi, Broadband terahertz metamaterial absorber based on simple multi-ring structures. Aip Advances, 8 (2018) 075206(8).  https://doi.org/10.1063/1.5024606.
  39. 39.
    Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, Broadband terahertz metamaterial absorber Based on asymmetric resonators with perfect absorption. Ieee Transactions on Terahertz Science and Technology, 5 (2015) 406–411.CrossRefGoogle Scholar
  40. 40.
    S. Liu, H.B. Chen, T.J. Cui, A broadband terahertz absorber using multi-layer stacked bars. Applied Physics Letters, 106 (2015) 5.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations