An Ellipsometric Technique with an ATR Module and a Monochromatic Source of Radiation for Measurement of Optical Constants of Liquids in the Terahertz Range

  • Ivan A. Azarov
  • Yulia Yu. ChoporovaEmail author
  • Vasily A. Shvets
  • Boris A. Knyazev


Measuring the optical constants of liquids, especially water-containing solutions, is very difficult in the terahertz range. The well-known methods of measurement of the refractive index and absorption coefficient in this range include time-domain spectroscopy and Fourier-transform spectrometry. We have developed a highly sensitive ellipsometry method for measuring the optical constants of liquids using the tunable monochromatic radiation from the Novosibirsk free-electron laser. The ellipsometer is supplemented with an internal reflection module for the measurement of highly absorbing samples. The angle of incidence on the sample in the silicon prism of the module has been optimized for maximum sensitivity to parameters to measure. Measurements of the optical constants of various liquids have been performed, and a sensitivity of 0.01 has been demonstrated.


Internal reflection ellipsometry Terahertz range Aqueous solution Free electron laser 



Operation of the user station “TeraRad,” belonging to the Novosibirsk State University, was supported by the Ministry of Education and Science of the Russian Federation. The experiments with the attenuated total reflection system was supported by the Russian Science Foundation (project N 14-50-00080). The experiments were carried out with the application of equipment belonging to the Siberian Center of Synchrotron and Terahertz Radiation (project RFMEFI62117X0012). The authors are grateful to the NovoFEL team for the invaluable support of the experiments.


  1. 1.
    P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 10, pp. 2438–2447, 2004.CrossRefGoogle Scholar
  2. 2.
    N. Nandi, K. Bhattacharyya, and B. Bagchi, “Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems,” Chemical Reviews, vol. 100, no. 6, pp. 2013–2045, 2000.CrossRefGoogle Scholar
  3. 3.
    G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200-nm to 200-μm Wavelength Region," Appl. Opt. 12, 555–563, 1973.CrossRefGoogle Scholar
  4. 4.
    Møller, Uffe, Jacob Riis Folkenberg, and Peter Uhd Jepsen. "Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy." Applied spectroscopy 64.9, 1028–1036, 2010.CrossRefGoogle Scholar
  5. 5.
    P. U. Jepsen, U. Møller, H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy”. Optics Express, 15(22), 14717–14737, 2007.CrossRefGoogle Scholar
  6. 6.
    Hirori, Hideki, et al. "Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses." Japanese journal of applied physics 43.10A L1287, 2004.CrossRefGoogle Scholar
  7. 7.
    Ya, Hiroyuki, M. Nagai, and K. Tanaka. "Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy." Chemical Physics Letters 464.4-6 166–170, 2008.Google Scholar
  8. 8.
    H. Fujiwara Spectroscopic ellipsometry: principles and applications. – John Wiley & Sons, 2007.Google Scholar
  9. 9.
    A. Dobroiu, C. Otani. "Measurement of the complex refractive index of liquids in the terahertz range using ellipsometry." Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010 35th International Conference on. IEEE, 2010.Google Scholar
  10. 10.
    H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Applied Optics, vol. 43, no. 15, pp. 3028–3036, 2004.CrossRefGoogle Scholar
  11. 11.
    “Ellipsometry of Functional Organic Surfaces and Films,” Ellipsometry of Functional Organic Surfaces and Films, vol. 52, pp. 1–363, 2014.Google Scholar
  12. 12.
    D. Fischer, A. Hertwig, U. Beck, V. Lohse, D. Negendank, M. Kormunda, and N. Esser, “Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE),” Beilstein Journal of Nanotechnology, vol. 8, pp. 522–529, 2017.CrossRefGoogle Scholar
  13. 13.
    H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses” Jpn.J.Appl.Phys., vol. 43, no. 10A, pp. L1287-L1289, 2004.CrossRefGoogle Scholar
  14. 14.
    A.Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M.Koch, and W. Withayachumnankul, “Attenuated Total Reflection Terahertz Time-Domain Spectroscopy: Uncertainty Analysis and Reduction Scheme IEEE Trans.Terahertz Sci. Technol.,vol.6, no.1, pp.32–39, 2016Google Scholar
  15. 15.
    A. Soltani, L. Duschek, S.F. Busch, T. Probst, E. Castro-Camus, and M.Koch “A novel accurate methodfor attenuated total reflection spectroscopy”, in 2014 39th International Conference on Infrared Millimeter, and Terahertz waves (IRMMW-THz), 2014, pp. 1–2.Google Scholar
  16. 16.
    I. A. Azarov, V. A. Shvets, V. Y. Prokopiev, S. A. Dulin, S. V. Rykhlitskii, Y. Y. Choporova, B. A. Knyazev, V. N. Kruchinin, and M. V. Kruchinina, “A terahertz ellipsometer,” Instruments and Experimental Techniques, vol. 58, no. 3, pp. 381–388, 2015.CrossRefGoogle Scholar
  17. 17.
    O. A. Shevchenko, V. S. Arbuzov, N. A. Vinokurov, P. D. Vobly, V. N. Volkov, Y. V. Getmanov, I. V. Davidyuk, O. I. Deychuly, E. N. Dementyev, B. A. Dovzhenko, B. A. Knyazev, E. I. Kolobanov, A. A. Kondakov, V. R. Kozak, E. V. Kozyrev, V. V. Kubarev, G. N. Kulipanov, E. A. Kuper, I. V. Kuptsov, G. Y. Kurkin, S. A. Krutikhin, L. E. Medvedev, S. V. Motygin, V. K. Ovchar, V. N. Osipov, V. M. Petrov, A. M. Pilan, V. M. Popik, V. V. Repkov, T. V. Salikova, I. K. Sedlyarov, S. S. Serednyakov, A. N. Skrinsky, S. V. Tararyshkin, A. G. Tribendis, V. G. Cheskidov, K. N. Chernov, and M. A. Shcheglov, “Novosibirsk free electron laser: recent achievements and future prospects,” Radiophysics and Quantum Electronics, vol. 59, no. 8–9, pp. 605–612, 2017.CrossRefGoogle Scholar
  18. 18.
    G. N. Kulipanov et al. “Novosibirsk free electron laser—facility description and recent experiments” IEEE transactions on terahertz science and technology, vol. 5, no. 5, pp. 798–809, 2015.CrossRefGoogle Scholar
  19. 19.
    Palik, Edward D., ed. Handbook of optical constants of solids. Vol. 3. Academic press, 1998.Google Scholar
  20. 20.
    R. M. A. Azzam, N. M. Bashara Ellipsometry and polarized light. – North-Holland. sole distributors for the USA and Canada, Elsevier Science Publishing Co., Inc., 1987.Google Scholar
  21. 21.
    in catalogues of TYDEX, J. S. Co, Accessed 6 Nov 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor Physics of SB RAS and Novosibirsk State UniversityNovosibirskRussia
  2. 2.Budker Institute of Nuclear Physics NovosibirskNovosibirskRussian Federation
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations