Optimization and Improvement of Output Performance in G-Band Extended Interaction Klystron

  • Renjie Li
  • Cunjun RuanEmail author
  • Huafeng Zhang
  • Ayesha Kosar Fahad
  • Shengyu Shan
  • Yanbin He


To improve the output performance of G-band extended interaction klystron (EIK), several practicable methods have been discussed. Firstly, the synchronization characteristics of the electron beam with the operating mode are analyzed in order to obtain large output power for optimized period. The influence of input gap voltage on the beam-wave interaction is studied, and the well-matched condition is established by optimizing the structure of input cavity. The gap length of output cavity is optimized to improve the electric field distribution. By adopting the optimized gap length and non-uniform gap lengths, the output power significantly increases from 360 to 570 W and 660 W, respectively; the corresponding bandwidth reaches to 650 MHz and 470 MHz. Moreover, AJDISK calculation is adopted to compare the results with CST simulation, and the similar gains and tendencies validate the relative reliability of our designed beam-wave interaction circuit. Therefore, our proposed methods for improving the output performance of G-band EIK are feasible and utilizable.


Synchronization Gap voltage Electric field distribution G-band High output power Broad bandwidth 



The authors give thanks to Prof. Jinjun Feng in the Vacuum Electronics National Laboratory, Beijing Vacuum Electronics Research Institute, China, for his sincere supports for the CST software supporting and research works in the paper.

Funding information

This work was supported by the National Natural Science Foundation of China under Grant 61831001, the High-Level Talent Introduction Project of Beihang University (Grant No. 29816248), and the Youth-Top-Talent Support Project of Beihang University (Grant No. KG12000801).


  1. 1.
    P. H. Siegel, IEEE Trans. Micro. Theory Tech. 3, 910 (2002).CrossRefGoogle Scholar
  2. 2.
    J. H. Booske, Phys. Plasmas 15, 055502 (2008).CrossRefGoogle Scholar
  3. 3.
    R. A. Lewis, J. Phys. D: Appl. Phys. 47, 374001 (2014).CrossRefGoogle Scholar
  4. 4.
    B. Steer, A. Roitman, P. Horoyski, M. Hyttinen, R. Dobbs, and D. Berry, in Proceedings of the IEEE International Pulsed Power Conference, Albuquerque, USA, 17–22 June 2007, pp. 1049–1053.Google Scholar
  5. 5.
    J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. Park, J. Park, and R. J. Temkin, IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Chodorow and T. Wessel-Berg, IRE Trans. Electron Devices 8, 44 (1961).CrossRefGoogle Scholar
  7. 7.
    A. Roitman, D. Berry, and B. Steer, IEEE Trans. Electron Devices 52, 895(2005).CrossRefGoogle Scholar
  8. 8.
    G. Liu, W. He, A. W. Cross, H. Yin, and D. Bowes, J. Phys. D: Appl. Phys. 46, 345102 (2013).CrossRefGoogle Scholar
  9. 9.
    Y. Yin, W. He, L. Zhang, H. Yin, and A. W. Cross, Phys. Plasmas 22, 073102 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Srivastava, Eur. J. Adv. Eng. Technol. 2, 54 (2015).Google Scholar
  11. 11.
    K. T. Nguyen, J. Pasour, E. L. Wright, D. E. Pershing, and B, Levush, in Proceedings of the IEEE International Vacuum Electronics Conference, Rome, Italy, 28–30 April 2009, pp. 298–299.Google Scholar
  12. 12.
    D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, IEEE Trans. Electron Devices 61, 1830 (2014).CrossRefGoogle Scholar
  13. 13.
    R. Li, C. Ruan, and H. Zhang, Phys. Plasmas 25, 033107 (2018).CrossRefGoogle Scholar
  14. 14.
    S. Chen, C. Ruan, W. Yong, C. Zhang, D. Zhao, X. Yang, and S. Wang, IEEE Trans. Plasma Sci. 42, 91 (2014).CrossRefGoogle Scholar
  15. 15.
    Y. Huang, M.S. thesis (University of Electronic Science and Technology of China, Chengdu, China, 2014).Google Scholar
  16. 16.
    A. S. Gilmour, Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons (Artech HouseBooks, Norwood, US, 2011), Chap. 11.Google Scholar
  17. 17.
    C. B. Wilsen, J. W. Luginsland, Y. L. Yue, T. M. Antonsen, D. P. Chernin, P. M. Tchou, M. W. Keyser, R. M. Gilgenbach, and L. D. Ludeking, IEEE Trans. Plasma Sci. 30, 1160 (2002).CrossRefGoogle Scholar
  18. 18.
    J. M. Vaughan, IEEE Trans. Electron Devices 11, 2510 (1985).CrossRefGoogle Scholar
  19. 19.
    G. Caryotakis, Stanford Linear Accelerator Center, paper No. SLAC-PUB-10620, 2004.Google Scholar
  20. 20.
    Y. Ding, Design, Manufacture and Application of High Power Klystron (National Defense Industry Press, Beijing, 2010), p. 53.Google Scholar
  21. 21.
    Y. M. Shin, L. R. Barnett, and N. C. Luhmann, IEEE Trans. Electron Devices 56, 3196 (2009).CrossRefGoogle Scholar
  22. 22.
    A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann, IEEE Trans. Electron Devices 64, 2390 (2017).CrossRefGoogle Scholar
  23. 23.
    CST Corp, “CST PS Tutorial,” Darmstadt, Germany, see
  24. 24.
    “User Manual CST Particle Studio SUITE” (CST Corp., Darmstadt, Germany, 2012).Google Scholar
  25. 25.
    A. Jensen, M. Fazio, J. Neilson, and G. Scheitrum, IEEE Trans. Electron Devices 61, 1666 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina

Personalised recommendations