Advertisement

A Rapid Fabrication of Novel Dual Band Terahertz Metamaterial by Femtosecond Laser Ablation

  • E. ManikandanEmail author
  • B. S. Sreeja
  • S. Radha
  • Ravi Nathuram Bathe
  • Ravikumar Jain
  • Shriganesh Prabhu
Article
  • 86 Downloads

Abstract

In this paper, we present a novel dual-band, polarization insensitive terahertz metamaterial design, numerical simulation, and its fabrication using femtosecond laser ablation process. The proposed design uses periodic patterned copper metallic structure on the polyimide thin film and provides dual resonant characteristics at 0.25 THz and 0.42 THz, respectively. The structure was simulated numerically using CST Microwave studio software and obtained the bandstop characteristics of – 22 dB at both the resonances. The obtained 10-dB bandwidth in numerical simulation at the first and second resonance was 11.7 GHz and 14 GHz, respectively. The normalized transmission, electric field, and the surface current distributions were analyzed for understanding the mechanism of dual-band resonance. In addition, the effect of geometrical parameters on the resonances has been discussed. The simulated structure was fabricated using 800 nm wavelength 100 fs Ti: Sapphire laser and the laser parameters were optimized for the ablation process. The characterization of the fabricated structure has been done using terahertz time-domain spectroscopy (THz-TDS) technique. The measurement results show that the fabricated structure has obtained polarization insensitive and angular stable transmission response.

Keywords

Metamaterial Terahertz Laser Ablation Microstructure 

References

  1. 1.
    S. RoyChoudhury, V. Rawat, A.H. Jalal, S.N. Kale, S. Bhansali, Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents, Biosens. Bioelectron. 86 (2016) 595–608.  https://doi.org/10.1016/j.bios.2016.07.020.CrossRefGoogle Scholar
  2. 2.
    W. Withayachumnankul, D. Abbott, Metamaterials in the terahertz regime, IEEE Photonics J. 1 (2009) 99–118.  https://doi.org/10.1109/JPHOT.2009.2026288.CrossRefGoogle Scholar
  3. 3.
    L. Li, J. Wang, J. Wang, H. Ma, H. Du, J. Zhang, S. Qu, Z. Xu, Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics, Sci. Rep. 6 (2016) 1–8.  https://doi.org/10.1038/srep24178. CrossRefGoogle Scholar
  4. 4.
    B.X. Wang, X. Zhai, G.Z. Wang, W.Q. Huang, L.L. Wang, A novel dual-band terahertz metamaterial absorber for a sensor application, J. Appl. Phys. 117 (2015).  https://doi.org/10.1063/1.4905261.
  5. 5.
    B.X. Wang, G.Z. Wang, Quad-Band Terahertz Absorber Based on a Simple Design of Metamaterial Resonator, IEEE Photonics J. 8 (2016).  https://doi.org/10.1109/JPHOT.2016.2633560.
  6. 6.
    B.X. Wang, Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs, IEEE J. Sel. Top. Quantum Electron. 23 (2017).  https://doi.org/10.1109/JSTQE.2016.2547325.
  7. 7.
    G.Z. Wang, B.X. Wang, Five-Band Terahertz Metamaterial Absorber Based on a Four-Gap Comb Resonator, J. Light. Technol. 33 (2015) 5151–5156.  https://doi.org/10.1109/JLT.2015.2497740.CrossRefGoogle Scholar
  8. 8.
    W. Pan, X. Yu, J. Zhang, W. Zeng, A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings, IEEE J. Quantum Electron. 53 (2017).  https://doi.org/10.1109/JQE.2016.2643279.
  9. 9.
    X. Wu, B. Quan, X. Pan, X. Xu, X. Lu, C. Gu, L. Wang, Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor, Biosens. Bioelectron. 42 (2013) 626–631.  https://doi.org/10.1016/j.bios.2012.10.095.CrossRefGoogle Scholar
  10. 10.
    S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H.L. Cui, C. Du, Terahertz Biosensing Based on a Polarization-Insensitive Metamaterial, IEEE Photonics Technol. Lett. 28 (2016) 986–989.  https://doi.org/10.1109/LPT.2016.2522473. CrossRefGoogle Scholar
  11. 11.
    Z. Geng, X. Zhang, Z. Fan, X. Lv, H. Chen, A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage, Sci. Rep. 7 (2017) 1–11.  https://doi.org/10.1038/s41598-017-16762-y. CrossRefGoogle Scholar
  12. 12.
    C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing, Appl. Phys. Lett. 91 (2007) 2005–2008.  https://doi.org/10.1063/1.2805016.CrossRefGoogle Scholar
  13. 13.
    C. Debus, P. Haring Bolívar, Terahertz biosensors based on double split ring arrays, 6987 (2008) 69870U.  https://doi.org/10.1117/12.786069.
  14. 14.
    J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, J. Kruger, Laser-Induced Periodic Surface Structures-A Scientific Evergreen, IEEE J. Sel. Top. Quantum Electron. 23 (2017).  https://doi.org/10.1109/JSTQE.2016.2614183.
  15. 15.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A Mater. Sci. Process. 63 (1996) 109–115.  https://doi.org/10.1007/s003390050359.CrossRefGoogle Scholar
  16. 16.
    S. Mishra, V. Yadava, Laser Beam MicroMachining (LBMM) - A review, Opt. Lasers Eng. 73 (2015) 89–122.  https://doi.org/10.1016/j.optlaseng.2015.03.017.CrossRefGoogle Scholar
  17. 17.
    P. Taylor, N. Ahmed, Laser Ablation Process Competency to Fabricate Microchannels in Titanium Alloy Laser Ablation Process Competency to Fabricate Microchannels in Titanium Alloy, (2015).  https://doi.org/10.1080/10426914.2015.1019132.
  18. 18.
    R. Jordan, D. Cole, G. Lunney, K. Mackay, D. Givord, Pulsed laser ablation of copper, 86 (1995) 24–28.  https://doi.org/10.1016/0169-4332(94)00370-X.CrossRefGoogle Scholar
  19. 19.
    M. Esakkimuthu, S.B. Suseela, R. Sankararajan, A. Gupta, G. Rana, S. Prabhu, Laser patterning of thin film copper and ITO on flexible substrates for terahertz antenna applications, J. Laser Micro Nanoeng. 12 (2017) 313–320.  https://doi.org/10.2961/jlmn.2017.03.0023.CrossRefGoogle Scholar
  20. 20.
    C. Mcdonnell, D. Milne, H. Chan, D. Rostohar, G.M.O. Connor, Part 1: Wavelength dependent nanosecond laser patterning of very thin indium tin oxide fi lms on glass substrates, Opt. Lasers Eng. 80 (2016) 73–82.  https://doi.org/10.1016/j.optlaseng.2015.12.005.CrossRefGoogle Scholar
  21. 21.
    N. Born, R. Gente, M. Koch, Laser beam machined free-standing terahertz metamaterials, Electron. Lett. 51 (2015) 3–4.  https://doi.org/10.1049/el.2015.0655.CrossRefGoogle Scholar
  22. 22.
    E. Manikandan, B.S. Sreeja, S. Radha, R.N. Bathe, Direct laser fabrication of five-band symmetric terahertz metamaterial with Fano resonance, Mater. Lett. 229 (2018) 320–323.  https://doi.org/10.1016/j.matlet.2018.07.044.CrossRefGoogle Scholar
  23. 23.
    Y. Hirayama, M. Obara, Heat-affected zone and ablation rate of copper ablated with femtosecond laser, J. Appl. Phys. 97 (2005).  https://doi.org/10.1063/1.1852692.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. Manikandan
    • 1
  • B. S. Sreeja
    • 1
  • S. Radha
    • 1
  • Ravi Nathuram Bathe
    • 2
  • Ravikumar Jain
    • 3
  • Shriganesh Prabhu
    • 3
  1. 1.Department of ECESSN College of EngineeringChennaiIndia
  2. 2.Center for Laser Processing of MaterialsInternational Advanced Research Centre for Powder Metallurgy and New MaterialsHyderabadIndia
  3. 3.Department of Condensed Matter Physics and Materials ScienceTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations