Design of Bias-Free Operational Uni-traveling-Carrier Photodiodes by Transient Simulation for High-power Pulsed Millimeter-Wave Signal Generation in the Sub-THz Regime

  • Tao Liu
  • Yongqing HuangEmail author
  • Xiaokai Ma
  • Gang Wu
  • Huijuan Niu
  • Kai Liu
  • Xiaofeng Duan
  • Xiaomin Ren


In this paper, bias-free operational uni-traveling-carrier photodiodes (UTC-PDs) for high-power pulsed millimeter-wave signal generation in the sub-terahertz regime are designed and investigated. The reliability of the physics-based transient simulation is first demonstrated by comparing with reported experimental results. Then, the epitaxial layers are analyzed and optimized through transient simulation for bias-free operation and high-power pulsed millimeter-wave signal generation. The performance between original and optimal structure is compared under excitation of pulse train and sinusoidal optical signals. The results show that the peak output power of the modified UTC-PD under 100-GHz, 200-GHz, and 312.5-GHz pulse train excitation is 4.685 dBm, 1.128 dBm, and − 4.653 dBm, improved by 2.05 dB, 5.15 dB, and 9.36 dB, respectively.


Millimeter-wave Sub-terahertz Uni-traveling-carrier photodiodes (UTC-PD) Bias-free Terahertz communications Optical communication Transient simulation 


Funding Information

This work was funded by Natural National Science Foundation of China (NSFC) (61574019, 61674018, 61674020), the Natural Science Foundation of Beijing Municipality (No. 4132069), and the Program for Changjiang Scholars and Innovative Research Team in University through the Ministry of Education of China (No. IRT0609).


  1. 1.
    S. Cherry, Edholm’s law of bandwidth, IEEE Spectrum, vol. 41, no.7, 2004, pp. 58–60.Google Scholar
  2. 2.
    J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications, J. Appl. Phys., vol. 107, pp. 111101, June 2010.CrossRefGoogle Scholar
  3. 3.
    Thomas Kleine-Ostmann, and Tadao Nagatsuma, A Review on Terahertz Communications Research, Journal of Infrared, Millimeter, Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.CrossRefGoogle Scholar
  4. 4.
    J. Wells, Faster than fiber: the future of multi-Gb/s wireless, IEEE Microw. Mag., vol. 10, no. 3, pp. 104–112, 2009.CrossRefGoogle Scholar
  5. 5.
    J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, Optical generation of very narrow linewidth millimeter wave signals, Electron Lett., vol. 28, no. 25, pp. 2309–2311, 1992.CrossRefGoogle Scholar
  6. 6.
    G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator, J. Lightw. Technol., vol. 23, no. 9, pp. 2687–2695, Sep. 2005.CrossRefGoogle Scholar
  7. 7.
    M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser, IEEE Electron. Lett., vol. 32, no. 17, pp. 1589–1591, 1996.CrossRefGoogle Scholar
  8. 8.
    S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, Tunable, continuous-wave terahertz photomixer sources and applications, J. Appl. Phys., vol. 109, no. 6, pp. 061301-1-061301-56, 2011.CrossRefGoogle Scholar
  9. 9.
    Hao Chi, and Jianping Yao, An approach to photonic generation of high-frequency phase-coded RF pulses, IEEE Photonics Technology Letters, vol. 19, no. 10, pp. 768–770, 2007.CrossRefGoogle Scholar
  10. 10.
    Wei Li, Li Xian Wang, Ming Li, and Ning Hua Zhu, Single phase modulator for binary phase-coded microwave signals generation, IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1867–1870, 2013.CrossRefGoogle Scholar
  11. 11.
    Yamei Zhang, and Shilong Pan, Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter, Optics Letters, vol. 38, no. 5, pp. 766–768, 2013.CrossRefGoogle Scholar
  12. 12.
    Paolo Ghelfi, Filippo Scotti, Francesco Laghezza, and Antonella Bogoni, Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems, IEEE Journal of Quantum Electronics, vol. 48, no. 9, pp. 1151–1157, 2012.CrossRefGoogle Scholar
  13. 13.
    Paolo Ghelfi, Filippo Scotti, Francesco Laghezza, and Antonella Bogoni, Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars, Journal of Lightwave Technology, vol. 30, no. 11, pp. 1638–1644, 2012.CrossRefGoogle Scholar
  14. 14.
    Alwyn J. Seeds, Haymen Shams, Martyn J. Fice, and Cyril C. Renaud, Terahertz photonics for wireless communications, Journal of Lightwave Technology, vol. 33, no. 3, pp. 579–587, 2014.CrossRefGoogle Scholar
  15. 15.
    Michael N. Feiginov, Analysis of limitations of terahertz p-i-n uni-traveling-carrier photodiodes, Journal of Applied Physics, vol. 102, no. 8, pp. 084510-1-084510-12, 2007.CrossRefGoogle Scholar
  16. 16.
    J.-W. Shi, F.-M.Kuo, C.-J. Wu, C. L. Chang, C.Y. Liu, C.-Y. Chen, and J.-I. Chyi, Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure, IEEE J. Quantum Electron., vol. 46, no. 1, pp. 80–86, Jan. 2010.CrossRefGoogle Scholar
  17. 17.
    J.-M. Wun, C.-H. Lai, N.-W. Chen, J. E. Bowers, and J.-W. Shi, Flip-chip bonding packaged THz photodiode with broadband high-power performance, IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2462–2464, Dec. 2014.CrossRefGoogle Scholar
  18. 18.
    A. S. Cross, Q. Zhou, A. Beling, Y. Fu, and J. C. Campbell, High-power flip-chip mounted photodiode array, Opt. Exp., vol. 21, no. 8, pp. 9967–9973, Apr. 2013.CrossRefGoogle Scholar
  19. 19.
    H. Chen A. Beling, H. Pan, and J. C. Campbell, A method to estimate the junction temperature of photodetectors operating at high photocurrent, IEEE J. Quantum Electronics, vol. 45, pp. 1537–1541, 2009.CrossRefGoogle Scholar
  20. 20.
    Tuptim Angkaew, Toshimasa Umezawa, and Tetsuya Kawanishi, Crosstalk reduction for large scale photonic integrated circuits, presented at the Int. Topical Meeting Microwave Photonics, Sendai, Japan, paper TuEB-9, Oct. 2014.Google Scholar
  21. 21.
    T. Umezawa, K. Akahane, N. Yamamoto, K. Inagaki, A. Kanno, and T. Kawanishi, Zero-bias operational ultra-broadband UTC-PD above 110 GHz for high symbol rate PD-array in high-density photonic integration, Presented at Optical Fiber Communications Conf. and Exhibition, Los Angeles, CA, USA, paper M3C.7, March 2015.Google Scholar
  22. 22.
    P. Zhang, X. Zhang, and R. Zhang, Design of broadband and high-output power uni-traveling-carrier photodiodes, Optics Communications, vol. 365, pp. 194–207, 2016.CrossRefGoogle Scholar
  23. 23.
    H. Pan, A. Beling, H. Chen, and J. C. Campbell, Characterization and optimization of high-power InGaAs/InP photodiodes, Opt. Quantum Electron., vol. 40, no. 1, pp. 41–46, 2008.CrossRefGoogle Scholar
  24. 24.
    F.-M. Kuo, M.-Z. Chou, and J.-W. Shi, Linear-cascade near-ballistic uni-traveling-carrier photodiodes with an extremely high saturation current–bandwidth product, Journal of Lightwave Technology, vol. 29, no. 4, pp. 432–438, 2011.CrossRefGoogle Scholar
  25. 25.
    M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, and M. Achouche, High responsivity and high power UTC and MUTC GaInAs-InP photodiodes, IEEE Photonics Technol. Lett., vol. 24, no. 4, pp. 318–320, 2012.CrossRefGoogle Scholar
  26. 26.
    Vitaly Rymanov, Andreas Stöhr, Sebastian Dülme, and Tolga Tekin, Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power, Optics Express, vol. 22, no. 7, pp. 7550–7558, 2014.CrossRefGoogle Scholar
  27. 27.
    Hsiu-Po Chuang, and Chen-Bin Huang, Generation and delivery of 1-ps optical pulses with ultrahigh repetition-rates over 25-km single mode fiber by a spectral line-by-line pulse shaper, Optics Express, vol. 18, no. 23, pp. 24003–24011, 2010.CrossRefGoogle Scholar
  28. 28.
    A. Hirata, M. Harada, and T. Nagatsuma, 120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals, J. Lightwave Technol., vol. 21, no. 10, pp. 2145–2153, 2003.CrossRefGoogle Scholar
  29. 29.
    N. A. Zakhleniuk, Theory and modelling of high-field carrier transport in high-speed photodetectors, International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), Newark, DE, USA, Sept. 2007.Google Scholar
  30. 30.
    Marc Currie, and Igor Vurgaftman, Microwave phase retardation in saturated InGaAs photodetectors, IEEE Photonics Technology Letters, vol. 18, no.13, pp.1433–1435, 2006.Google Scholar
  31. 31.
    J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, Characterization of power-to-phase conversion in high-speed p-i-n photodiodes, IEEE Photonics Journal, vol. 3, no. 1, pp. 140–151, 2011.CrossRefGoogle Scholar
  32. 32.
    Li-sa Liu, Sheng Xie, Lu-hong Mao, Shi-lin Zhang, and Hai-tao Qi, Transient simulation and optimization of InP/InGaAs uni-traveling carrier photodetector, Optoelectronics Letters, vol. 6, no. 3, pp. 191–194, 2010.CrossRefGoogle Scholar
  33. 33.
    S. M. Mahmudur Rahman, Hans Hjelmgren, Josip Vukusic, Jan Stake, Peter A. Andrekson, and Herbert Zirath, Hydrodynamic simulations of unitraveling-carrier photodiodes, IEEE Journal of Quantum Electronics, vol. 43, no. 11, pp. 1088–1094, 2007.CrossRefGoogle Scholar
  34. 34.
    ATLAS User’s Manual, Silvaco International, Santa Clara, 2010.Google Scholar
  35. 35.
    Yong-Liang Huang and Chi-Kuang Sun, Nonlinear saturation behaviors of high-speed p-i-n photodetectors, Journal of Lightwave Technology, vol. 18, no. 2, pp. 203–212, 2000.CrossRefGoogle Scholar
  36. 36.
    H. Ito, T. Furuta, T. Furuta, N. Watanabe, T. Ishibashi and S. Kodama, InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth, Electronics Letters, vol. 35, no. 18, pp. 1556–1557, 1999.CrossRefGoogle Scholar
  37. 37.
    Tadao Ishibashi, and Naofumi Shimizu, Uni-traveling-carrier photodiodes as an optoelectronic driver, OSA TOPS Ultrafast Electronics and Optoelectronics, vol. 28, pp. 203–207, 1999.Google Scholar
  38. 38.
    T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, et al, InP/InGaAs uni-traveling-carrier photodiodes, IEICE Trans. Electron, vol. E83-C, no. 6, pp. 938–949, Jun. 2000.Google Scholar
  39. 39.
    H. Ito, T. Yoshimatsu, H. Yamamoto, T. Ishibashi, Broadband photonic terahertz-wave emitter integrating UTC-PD and novel planar antenna, Proc. SPIE, vol. 8716, paper 871602, 2013.Google Scholar
  40. 40.
    Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, High-saturation-current modified uni-traveling-carrier photodiode with cliff layer, IEEE Journal of Quantum Electronics, vol. 46, no. 5, pp. 626–632, 2010.CrossRefGoogle Scholar
  41. 41.
    X. Wang, N. Duan, H. Chen, and J. C. Campbell, InGaAs–InP photodiodes with high responsivity and high saturation power, IEEE Photonics Technology Letters, vol. 19, no. 16, pp. 1272–1274, 2007.CrossRefGoogle Scholar
  42. 42.
    H. Pan, Z. Li, A. Beling, and J. C. Campbell, Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber, Optics Express, vol. 17, no. 22, pp. 20222–20226, 2009.CrossRefGoogle Scholar
  43. 43.
    Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang, Design of broadband and high-output power uni-traveling-carrier photodiodes, Optics Express, vol. 21, no. 6, pp. 6943–6954, 2013.CrossRefGoogle Scholar
  44. 44.
    G. A. Davis, R. E. Weiss, R. A. LaRue, K. J. Williams, and R. D. Esman, A 920-1650-nm high-current photodetector, IEEE Photonics Technology Letters, vol. 8, no. 10, pp.1373–1375, 1996.Google Scholar
  45. 45.
    H. Ito, T. Ito, Y. Muramoto, T. Furuta, and T. Ishibashi, Rectangular waveguide output uni-traveling-carrier photodiode module for high-power photonic millimeter-wave generation in the F-band, J. Lightwave Technol., vol. 21, no. 12, pp. 3456–3462, Dec. 2003.CrossRefGoogle Scholar
  46. 46.
    H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes, IEEE J. Sel. Topics Quantum Electron., vol. 10, no. 4, pp. 709–727, 2004.CrossRefGoogle Scholar
  47. 47.
    F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping, IEEE Photon. J., vol. 2, no. 5, pp. 719–727, Oct. 2010.CrossRefGoogle Scholar
  48. 48.
    J.-M. Wun, R.-L. Chao, Y.-W. Wang, Y.-H. Chen, and J.-W. Shi, Type-II GaAs0.5Sb0.5/InP uni-traveling carrier photodiodes with sub-terahertz bandwidth and high-power performance under zero-bias operation, Journal of Lightwave Technology, vol. 35, no. 4, pp. 711–716, 2017.CrossRefGoogle Scholar
  49. 49.
    T. Umezawa, A. Kanno, K. Kashima, A. Matsumoto, K. Akahane, N. Yamamoto, and T. Kawanishi, Bias-free operational UTC-PD above 110 GHz and its application to high baud rate fixed-fiber communication and W-band photonic wireless communication, Journal of Lightwave Technology, vol. 34, no. 13, pp. 3138–3147, 2016.CrossRefGoogle Scholar
  50. 50.
    J.-M. Wun, H.-Y. Liu, C.-H. Lai, Y.-S. Chen, S.-D. Yang, C.-L. Pan, J. E. Bowers, C.-B. Huang, and J.-W. Shi, Photonic high-power 160 GHz signal generation by using ultra-fast photodiode and a high-repetition-rate femtosecond optical pulse train generator, IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, paper. 3803507, Nov./Dec. 2014.Google Scholar
  51. 51.
    J.-M. Wun, H.-Y. Liu, Y.-L. Zeng, S.-D. Yang, C.-L. Pan, Chen-Bin Huang, and Jin-Wei Shi, Photonic high-power continuous wave THz-wave generation by using flip-chip packaged uni-traveling carrier photodiodes and a femtosecond optical pulse generator, Journal of Lightwave Technology, vol. 34, no. 4, pp. 1387–1397, 2016.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations