Advertisement

Effect of Mode Transformation in THz Clinotron

  • Yurii S. Kovshov
  • Sergey S. Ponomarenko
  • Sergey S. Kishko
  • Alexander Likhachev
  • Alexander Danik
  • Lyudmila Mospan
  • Sergiy Steshenko
  • Eduard M. Khutoryan
  • Alexei N. Kuleshov
Article

Abstract

Extension of the theory of a clinotron is developed by use of the scattering matrix of an oversized T-junction on the ends of a slow wave system. The matrix contains elements corresponding to the transformation of slow grating modes into fast ones and vice versa. Those fast waves with low ohmic losses provide strong resonant properties of a clinotron even in the case of strong attenuation of the surface mode. Results of the theoretical simulation are compared with experimental ones and obtained dependencies explain strong resonances in sub-THz clinotrons.

Keywords

Beam-wave interaction Clinotron Backward wave oscillator Grating Oversized waveguide T-junction Scattering matrix Mode transformation 

References

  1. 1.
    G.Gruner, “Millimeter and submillimeter wave spectroscopy of solids,” in Topics in Applied Physics, New York: Springer, 1998.Google Scholar
  2. 2.
    G. A. Komandinet al., “BWO Generators for terahertz dielectric measurements,” IEEE Trans. on THz Sci., vol. 3, no. 4, pp. 440–444, July 2013, DOI.  https://doi.org/10.1109/TTHZ.2013.2255914.CrossRefGoogle Scholar
  3. 3.
    G. Ya. Levin et al.,Clinotron, Kiev, Ukraine: NanukovaDumka, 1992. (in Russian) The Clinotron (in Russian), edited by A. Ya. Usikov (Naukova Dumka, Kiev, 1992).Google Scholar
  4. 4.
    SchunemannK. and Vavriv D. M., “Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam”, IEEE Trans. on Electron Devices, Vol. 46, Issue 11, pp. 2245–2252, 1999CrossRefGoogle Scholar
  5. 5.
    S. S. Ponomarenko et al., “400-GHz continuous-wave clinotron oscillator,” IEEE Trans. on Pl. Sci., vol. 41, no. 1, pp. 82–86, 2013, DOI.  https://doi.org/10.1109/TPS.2012.2226247.CrossRefGoogle Scholar
  6. 6.
    Shuang Li, Jianguo Wang, Zaigao Chen, Guangqiang Wang, Dongyang Wang, and Yan Teng, “Study on the stability and reliability of Clinotron at Y-band”, Physics of Plasmas 24, 113108 (2017)CrossRefGoogle Scholar
  7. 7.
    Zaigao Chen and Yue Wang, “Development of a novel overmoded sub-terahertz inclined coaxial clinotron with asymmetric mode suppressed”, Physics of Plasmas 24, 103109 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Khutoryanet al., “Theory of multimode resonant backward-wave oscillator with an inclined electron beam,” IEEE Trans. on El. Dev., vol. 62, no. 5, pp.1628–1634, 2015, DOI.  https://doi.org/10.1109/TED.2015.2411680.CrossRefGoogle Scholar
  9. 9.
    Milcho, M. V., Yefimov, B. P., Zavertanniy, V. V. and Goncharov, V. V., Peculiar Properties of Operating Modes of Klynotron-Type Oscillators, Telecommunications and Radio Engineering, Vol. 65, 2006, Issue 6–10, pp. 719–730. CrossRefGoogle Scholar
  10. 10.
    B.P.Yefimov, G.Ya. Levin, “Multiwave Resonance BWT of Clinotron type MM-Radiowave Band”, Int. Journal of Infrared and Millimeter Waves, Vol. 18, Issue 11, pp.31–39, 1997.Google Scholar
  11. 11.
    B. Levush, T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou, and Y. Carmel, “Theory of relativistic backward-wave oscillators with end reflectors”, IEEE on Plasma Science, 20, 3 (1992).CrossRefGoogle Scholar
  12. 12.
    G. S. Nusinovich, Yu. P. Bliokh, “Mode interaction in backward-wave oscillators with strong end reflections”, Physics of Plasmas, 7, 4, 1294–1301, (2000)CrossRefGoogle Scholar
  13. 13.
    Andrushkevich, V. S., Gamayunov, Yu. G. and Patrusheva, Ye. V., 2011. Non-stationary theory of clinotron. Radiotekhnika i elektronika. 56(4), pp. 493–499 (in Russian).Google Scholar
  14. 14.
    Y. S. Kovshov, S. S. Ponomarenko, S. A. Kishko, E. M. Khutoryan, A. N. Kuleshov, “Numerical Simulation and Experimental Study of Sub-THz and THz CW Clinotron Oscillators”, IEEE Transactions on Electron Devices,  https://doi.org/10.1109/TED.2018.2792258 CrossRefGoogle Scholar
  15. 15.
    A. A. Kirilenko, S. L. Senkevich, S. O. Steshenko, “Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures,” Telecommunications and Radio Engineering, vol.74, No 17, 2015, pp. 1497–1511, DOI:  https://doi.org/10.1615/TelecomRadEng.v74.i17.10.CrossRefGoogle Scholar
  16. 16.
    S.O. Steshenko, S.A. Prikolotin, A.A. Kirilenko, D.Yu. Kulik, L.A. Rud, S.L. Senkevich, Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries: Part 2. Plane-transverse junctions and "in-line" objects Telecommunications and Radio Engineering, vol.73, No 3, 2014, pp. 187–201.Google Scholar
  17. 17.
    Rud’ L. A., “E-plane T-junction of oversize rectangular waveguides”, Radiophysics and Quantum Electronics. - February 1985, Volume 28, Issue 2, pp 146–151.Google Scholar
  18. 18.
    E. M. Marshall, J. E. Walsh, E. J. Price, and J. A. Jackson, Int. J. Inf. Millimeter Waves, 11 (10), 1189–1224 (1990).CrossRefGoogle Scholar
  19. 19.
    Electronics of backward-wave tubes (in Russian), V. N. Shevchik and D. I. Trubezkov (Saratov University 1975).Google Scholar
  20. 20.
    Yu. S. Kovshov, S. S. Ponomarenko, S. A. Kishko, A. A. Likhachev, S. A. Vlasenko, V. V. Zavertanniy,E. M. Khutoryan, A. N. Kuleshov, HIGH FREQUENCY OHMIC LOSSES IN TERAHERTZ FREQUENCY RANGE CW KLYNOTRONS, Telecommunications and Radio Engineering, Volume 76, 2017 Issue 10, pp. 929–940.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yurii S. Kovshov
    • 1
  • Sergey S. Ponomarenko
    • 1
  • Sergey S. Kishko
    • 1
  • Alexander Likhachev
    • 1
  • Alexander Danik
    • 1
  • Lyudmila Mospan
    • 1
  • Sergiy Steshenko
    • 1
  • Eduard M. Khutoryan
    • 1
  • Alexei N. Kuleshov
    • 1
  1. 1.O. Ya. Usikov Institute for Radiophysics and Electronics IRE NASUKharkivUkraine

Personalised recommendations