Advertisement

Frequency Tunable sub-THz Gyrotron for Direct Measurements of Positronium Hyperfine Structure

  • A. E. Fedotov
  • R. M. Rozental
  • I. V. Zotova
  • N. S. Ginzburg
  • A. S. Sergeev
  • V. P. Tarakanov
  • M. Yu. Glyavin
  • T. Idehara
Article

Abstract

The feasibility of a high-power sub-THz gyrotron with smooth wideband frequency tuning suitable for direct measurement of the positronium hyperfine structure is demonstrated numerically using both averaged equations and PIC-code simulations. Analytical estimates show that the frequency-tunable powerful sub-THz radiation can be generated through the excitation of high-order axial modes in a gyrotron with short cavity driven by an electron beam with high current. Simulations show that an output power of 0.5–1 kW can be obtained at a frequency of about 0.2 THz within a 10-GHz band which are the parameters needed for testing of quantum electrodynamics predictions through the spectroscopy of positronium.

Keywords

Gyrotron Terahertz radiation Frequency tuning Spectroscopy Positronium 

Notes

Funding

The work was supported by the Russian Science Foundation under grant no. 16-12-10445.

References

  1. 1.
    T. Namba, Prog. Theor. Exp. Phys. 2012, 04D003 (2012).CrossRefGoogle Scholar
  2. 2.
    T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, I. Ogawa, T. Idehara, and S. Sabchevski, Phys. Rev. Lett. 108, 253401 (2012).CrossRefGoogle Scholar
  3. 3.
    A.P. Mills, Phys. Rev. A 27, 262 (1983).CrossRefGoogle Scholar
  4. 4.
    M. W. Ritter, P. O. Egan, V. W. Hughes, and K. A. Woodle, Phys. Rev. A 30, 1331 (1984).CrossRefGoogle Scholar
  5. 5.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Tatematsu, J. Infrared, Millimeter THz Waves 35, 91 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Ozeki, R. Ikeda, T. Kanemaki, I. Ogawa,T. Saito, J. Infrared, Millimeter THz Waves 33, 292 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Yu. Glyavin, A. V. Chirkov, G. G. Denisov, A. P. Fokin, V. V. Kholoptsev, A. N. Kuftin, A. G. Luchinin, G. Yu. Golubyatnikov, V. I. Malygin, M. V. Morozkin, V. N. Manuilov, M. D. Proyavin, A. S. Sedov, E. V. Sokolov, E. M. Tai, A. I. Tsvetkov, and V. E. Zapevalov, Rev. Sci. Instr. 86, 054705 (2015).CrossRefGoogle Scholar
  8. 8.
    M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers. KIT Scientific Reports, Nr. 7735, 2016.Google Scholar
  9. 9.
    S. Asai, T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, S. Sabchevski, J. Infrared, Millimeter THz Waves 33, 766 (2012).CrossRefGoogle Scholar
  10. 10.
    I. I. Antakov, E. V. Zasypkin, E. V. Sokolov, Int. J. Infrared Millim. Waves 14, 1001 (1993).CrossRefGoogle Scholar
  11. 11.
    T.H. Chang, T. Idehara, I. Ogawa, L. Agusu, and S. Kobayashi, J. Appl. Phys. 105, 063304 (2009).CrossRefGoogle Scholar
  12. 12.
    A.C. Torrezan, S.-T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, and R.G. Griffin, IEEE Trans. Plasma Sci. 38, 1150 (2010).CrossRefGoogle Scholar
  13. 13.
    A.B. Barnes, E.A. Nanni, J. Hertzfeld, R.G. Griffin, and R.J. Temkin, J. Magn. Resonance 221, 147 (2012).CrossRefGoogle Scholar
  14. 14.
    R. Ikeda, R. Yamaguchi, Y. Tatematsu, T. Idehara, I. Ogawa, T. Saito, Y. Matsuki, and T. Fujiwara, Plasma and Fusion Research: Rapid Communications 9, 1206058 (2014).CrossRefGoogle Scholar
  15. 15.
    T. H. Chang, T. Idehara, I. Ogawa, L. Agusu, and S. Kobayashi, J. Appl. Phys. 105, 063304 (2009).CrossRefGoogle Scholar
  16. 16.
    V. L. Bratman, A. E. Fedotov, Yu. K. Kalynov, I. V. Osharin, N. A. Zavolsky, IEEE Trans. Electron Dev. 64, 5147 (2017).CrossRefGoogle Scholar
  17. 17.
    V. L. Bratman, M. A. Moiseev, M. I. Petelin, R. E. Erm, Radiophys. Quant. Electron. 16, 474 (1973).CrossRefGoogle Scholar
  18. 18.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons (Baltimore: The John Hopkins University Press, 2004).Google Scholar
  19. 19.
    A. V. Gaponov, V. A. Flyagin, A. L. Gol’denberg, G. S. Nusinovich, Sh. E. Tsimring, V. G. Usov, S. N. Vlasov, Int. J. Electron. 51, 277 (1981).CrossRefGoogle Scholar
  20. 20.
    M. A. Moiseev, V. E. Zapevalov, N. A. Zavolsky, Int. J. Infrared Millim. Waves 22, 813 (2001).CrossRefGoogle Scholar
  21. 21.
    N. S. Ginzburg, A. S. Sergeev, I. V. Zotova, and I. V. Zheleznov, Phys. Plasmas 22, 013112 (2015).CrossRefGoogle Scholar
  22. 22.
    N. S. Ginzburg, N. A. Zavolsky, and G. S. Nusinovich, Int. J. Electron. 61, 881 (1986).CrossRefGoogle Scholar
  23. 23.
    V. P. Tarakanov, User's Manual for Code KARAT (Springfield, VA: Berkeley Research Associates, 1992).Google Scholar
  24. 24.
    V. P. Tarakanov, EPJ Web of Conferences 149, 04024 (2017).CrossRefGoogle Scholar
  25. 25.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, R. G. Griffin, IEEE Trans. Electron. Dev. 58, 2777 (2011).CrossRefGoogle Scholar
  26. 26.
    E. V. Zasypkin, M. A. Moiseev, L. L. Nemirovskaya, Int. J. Electron. 85, 207 (1998).CrossRefGoogle Scholar
  27. 27.
    X.-B. Qi, C.-H. Du, S. Pan, X. Ji, B. Huang, P.-K. Liu, IEEE Trans. Electron. Dev 64, 527 (2017).CrossRefGoogle Scholar
  28. 28.
    V. L. Bratman, S. L. Novozhilov, and M. I. Petelin, Elektronnaya Tekhnika (Elektronika SVCh), 1976, no. 11, p. 46, in Russian.Google Scholar
  29. 29.
    V. L. Bratman, M. A. Moiseev, Radiophys. Quant. Electron. 18, 772 (1975).CrossRefGoogle Scholar
  30. 30.
    T. H. Chang, and S. H. Chen, Phys. Plasmas 12, 013104 (2004).CrossRefGoogle Scholar
  31. 31.
    V.E. Zapevalov, A.N. Kuftin, V.N. Manuilov, M.A. Moiseev, A.B. Pavelyev, A.S. Sedov, and N.A. Zavolsky, Proc. of 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” (SMP-2011), Nizhny Novgorod–St. Petersburg, Russia, July 2011, p. 143–144.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Research Center for Development of Far-Infrared RegionUniversity of Fukui (FIR UF)FukuiJapan
  3. 3.Moscow Engineering Physics InstituteMoscowRussia
  4. 4.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations