A Comprehensive Study of Albumin Solutions in the Extended Terahertz Frequency Range

  • M. M. NazarovEmail author
  • O. P. Cherkasova
  • A. P. Shkurinov


Sensitivity of the THz frequency range to the solutions of biomolecules originates from the decrease of absorption and dispersion of water in its bound state. Correct measurement and interpretation of the THz spectra of water-containing samples is still a challenging task because the reliable relaxation model for such spectra is not well established. The transmission and the attenuated total internal reflection geometries data were combined for precise analysis of the spectra of the aqueous solutions of bovine serum albumin within the range 0.05–3.2 THz. We compare the concentration dependencies of the dielectric function at “low,” “middle,” and “high” frequency and do not confirm an anomalous increase in absorption for concentrations below 17 mg/mL published by other teams.


Terahertz time-domain spectroscopy Transmission Attenuated total internal reflection Protein solution Water BSA Relaxation model 


Funding Information

This work has been supported by the Russian Foundation for Basic Research (project no. 17-00-00275 (17-00-00270)).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    L. Comez, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi, D. Fioretto, Soft Matter 12 (25), 5501 (2016)CrossRefGoogle Scholar
  2. 2.
    D. Laage, T. Elsaesser, J. T. Hynes, Chem. Rev. 117, 10694 (2017)CrossRefGoogle Scholar
  3. 3.
    N. Nandi, K. Bhattacharyya, B. Bagchi, Chem. Rev., 100 (6), 2013 (2000) DOI: CrossRefGoogle Scholar
  4. 4.
    Wolf M., Gulich R., Lunkenheimer P., Loidl A. Biochim. Biophys. Acta: Proteins Proteomics, 1824 (5), 723 (2012).Google Scholar
  5. 5.
    V. Raicu, Y. Feldman, Dielectric relaxation in biological systems: Physical principles, methods, and applications, Oxford University Press, New York, 2015.CrossRefGoogle Scholar
  6. 6.
    A. Barth, Biochimica et Biophysica Acta 1767, 1073 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Shiraga, Y. Ogawa, N. Kondo, Biophysical Journal 111, 2629 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Xu, K. W. Plaxco, S. J. Allen, Protein Science 15 (5), 1175 (2006)CrossRefGoogle Scholar
  9. 9.
    J.W. Bye, S. Meliga., D. Ferachou, G. Cinque, J. A. Zeitler, R. J. Falconer, J. Phys. Chem. A, 118 (1), 883 (2014)CrossRefGoogle Scholar
  10. 10.
    O. Sushko, R. Dubrovka, R.S. Donnan, The Journal of Chemical Physics, 142, 055101–1 (2015)CrossRefGoogle Scholar
  11. 11.
    M.M. Nazarov, O.P. Cherkasova, A.P. Shkurinov, Quantum Electronics, 46(6), 488 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Penkov, V. Yashin, E. Fesenko, A. Manokhin, E. Fesenko, Applied Spectroscopy, 72(2), 257 (2018)CrossRefGoogle Scholar
  13. 13.
    O.P. Cherkasova, M.M. Nazarov, A.A. Angeluts, A.P. Shkurinov, Optics and Spectroscopy, 120 (1), 50 (2016)CrossRefGoogle Scholar
  14. 14.
    M.M. Nazarov, A.P. Shkurinov, A.A. Angeluts, D.A. Sapozhnikov, Radiophysics and Quantum Electronics, 52 (18), 536 (2009)CrossRefGoogle Scholar
  15. 15.
    E.V. Fedulova, M.M. Nazarov, A.A. Angeluts, M.S. Kitai, V.I. Sokolov, A.P. Shkurinov, Proc. SPIE 8337, Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine XIII, 83370I (2012)Google Scholar
  16. 16.
    N. Gorlenko, B. Laptev, G. Sidorenko, Y. Sarkisov, T. Minakova, A. Kylchenko, O. Zubkova, AIP Conference Proceedings,1698 (1), 060002 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Nazarov, A. Shkurinov, V.V. Tuchin, X.C. Zhang, Terahertz tissue spectroscopy and imaging. Handbook of photonics for biomedical science (2010).Google Scholar
  18. 18.
    A.A. Angeluts, A.V. Balakin, M.G. Evdokimov, M. N. Esaulkov, M.M. Nazarov, I.A. Ozheredov, D.A. Sapozhnikov, P.M. Solyankin, O.P.Cherkasova, A.P. Shkurinov. Quantum Electronics, 44(7), 614 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Nagai, H. Yada, T. Arikawa, K. Tanaka, International Journal of Infrared and Millimeter Waves, 27 (4), 505 (2006)CrossRefGoogle Scholar
  20. 20.
    H. Yada, M. Nagai, and K. Tanaka, Chem. Phys. Lett 464, 166 (2008)CrossRefGoogle Scholar
  21. 21.
    O.P. Cherkasova, M.M. Nazarov, A.P. Shkurinov, V.I. Fedorov, Radiophys. Quantum. El. 52, 518 (2009)CrossRefGoogle Scholar
  22. 22.
    N.Q. Vinh, S.J. Allen, K.W. Plaxco, J. Am. Chem. Soc., 133 (23), 8942 (2011)CrossRefGoogle Scholar
  23. 23.
    K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, Y. Ogawa, Carbohydr. Res., 406, 46 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Fuchs, U. Kaatze, The Journal of Physical Chemistry B, 105 (10), 2036 (2001)CrossRefGoogle Scholar
  25. 25.
    I. Popov, P.B. Ishai, A. Khamzin, Y. Feldman, Physical Chemistry Chemical Physics, 18,13941 (2016)CrossRefGoogle Scholar
  26. 26.
    P. U. Jepsen, H. Merbold, J Infrared Milli Terahz Waves, 31, 430 (2010)Google Scholar
  27. 27.
    S. Sarkar, D. Saha, S. Banerjee, A. Mukherjee, P. Mandal, Chemical Physics Letters, 678, 65 (2017)CrossRefGoogle Scholar
  28. 28.
    K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, Y. Ogawa, The Journal of Chemical Physics, 146 (10), 105102 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Fukasawa, T. Sato, J. Watanabe, Y. Hama, W. Kunz, R. Buchner, Physical Review Letters 95 (19), 197802 (2005)CrossRefGoogle Scholar
  30. 30.
    U. Kaatze, Journal of Chemical and Engineering Dat, 34 (4) 371 (1989)CrossRefGoogle Scholar
  31. 31.
    M.N. Afsar, J.B. Hasted, J. Opt. Soc. Am., 67, 902 (1977)CrossRefGoogle Scholar
  32. 32.
    O. Cherkasova, M. Nazarov, A. Shkurinov, Journal of Physics: Conference Series,793 (2017)
  33. 33.
    D. K. George, A. Charkhesht, N. Q. Vinh, Review of Scientific Instruments 86, 123105 (2015) CrossRefGoogle Scholar
  34. 34.
    U. Moller, D. G. Cooke, K. Tanaka, P. U. Jepsen, J. Opt. Soc. Am. B, 26 (9), A113(2009) doi: CrossRefGoogle Scholar
  35. 35.
    W. J. Ellison, Journal of Physical and Chemical Reference Data, 36, 1 (2007), Scholar
  36. 36.
    O.P. Cherkasova, M.M. Nazarov, A.P. Shkurinov, Proc. IEEE 41th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Copenhagen, Denmark, 2016).
  37. 37.
    M. Grognot, G. Gallot, The Journal of Physical Chemistry B, 121(41), 9508 (2017)CrossRefGoogle Scholar
  38. 38.
    K. Fuchs, U.J. Kaatze, Phys. Chem. B. 105(10), 2036–2042 (2001)CrossRefGoogle Scholar
  39. 39.
    O. Cherkasova, M. Nazarov, A. Shkurinov, Optical and Quantum Electronics, 48(3), 217 (2016)CrossRefGoogle Scholar
  40. 40.
    T.H. Basey-Fisher, S.M. Hanham, H. Andresen, S.A. Maier, M.M. Stevens, N.M. Alford, N. Klein, Applied Physics Letters, 99(23), 233703 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Shiraga, T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito, Y. Ogawa, The Journal of Chemical Physics 142 (23) 234504 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research CenterKurchatov InstituteMoscowRussia
  2. 2.Institute of Laser Physics of SB RASNovosibirskRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.Crystallography and Photonics Federal Research CenterRussian Academy of SciencesMoskvaRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations