Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness
- 22 Downloads
Abstract
The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs’ thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.
Keywords
Terahertz waves Electro-optic sampling Cherenkov-phase-matching Gallium arsenide WaveguideReferences
- 1.M. Tani, K. Horita, T. Kinoshita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, Opt. Express, 19(21), 19901–19906 (2011).CrossRefGoogle Scholar
- 2.M. Tani, T. Kinoshita, T. Nagase, K. Horita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, Opt. Express, 21(8), 9277–9288 (2013).CrossRefGoogle Scholar
- 3.R. delos Santos, S. Ozawa, V. Mag-usara, S. Azuma, A. Tuico, V. Copa, A. Salvador, K. Yamamoto, A. Somintac, K. Kurihara, H. Kitahara, M. Tani, and E. Estacio, Opt. Express, 24(22), 24980–24988 (2016).CrossRefGoogle Scholar
- 4.M. Vossebürger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, Appl. Opt., 37(15), 3368–3371 (1998).CrossRefGoogle Scholar
- 5.Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, Opt. Express, 18(15), 15956–15963 (2010).CrossRefGoogle Scholar
- 6.Q. Wu, and X. C. Zhang, Appl. Phys. Lett., 68(12), 1604–1606 (1996).CrossRefGoogle Scholar
- 7.Q. Chen, M. Tani, Z. Jiang, and X. C. Zhang, J. Opt. Soc. Am. B, 18(6), 823–831 (2001).CrossRefGoogle Scholar
- 8.M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, Appl. Phys. Lett., 85(18), 3974–3976 (2004).CrossRefGoogle Scholar
- 9.D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett., 53(16), 1555–1558 (1984).CrossRefGoogle Scholar
- 10.J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, IEEE J. Quantum Electron., 19(4), 664–667 (1983).CrossRefGoogle Scholar
- 11.Q. Wu, and X. C. Zhang, Appl. Phys. Lett., 67(24), 3523–3525 (1995).CrossRefGoogle Scholar
- 12.S. Namba, J. Opt. Soc. Am., 51(1), 76–79 (1961).CrossRefGoogle Scholar
- 13.R. W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2003), pp. 519–520Google Scholar
- 14.Y. S. Lee, Principles of Terahertz Science and Technology (Springer Science & Business Media, 2009), pp. 94–95Google Scholar
- 15.D. Liu, and J. Qin, Int. J. Infrared Millim. Waves, 24(6), 929–939 (2003).CrossRefGoogle Scholar
- 16.S. Tsuzuki, D. Takeshima, T. Sakon, T. Kinoshita, T. Nagase, K. Kurihara, K. Yamamoto, F. Kuwashima, T. Furuya, E. Estacio, K. Kawase, M. I. Bakunov, and M. Tani, Appl. Phys. Express, 7(11), 112401 (2014).CrossRefGoogle Scholar
- 17.R. Mendis, and D. M. Mittleman, Opt. Express, 17(17), 14839–14850 (2009).CrossRefGoogle Scholar