Pixel Statistical Analysis of Diabetic vs. Non-diabetic Foot-Sole Spectral Terahertz Reflection Images

  • G. G. Hernandez-Cardoso
  • M. Alfaro-Gomez
  • S. C. Rojas-Landeros
  • I. Salas-Gutierrez
  • E. Castro-Camus
Article

Abstract

In this article, we present a series of hydration mapping images of the foot soles of diabetic and non-diabetic subjects measured by terahertz reflectance. In addition to the hydration images, we present a series of RYG-color-coded (red yellow green) images where pixels are assigned one of the three colors in order to easily identify areas in risk of ulceration. We also present the statistics of the number of pixels with each color as a potential quantitative indicator for diabetic foot-syndrome deterioration.

Keywords

Terahertz imaging Diabetic foot Tissue hydration Biomedical applications 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of CONACyT through grants 280392, 255114 and 252939 and scholarships 291236 and 290915. We also want to thank H. L. Lopez-Lemus who helped with the logistics of the measurements at ISSSTE-Leon, and the ethics committee paperwork.

Compliance with Ethical Standards

The protocol for measurements on human subjects was approved by the Ethics Committee of the Hospital Regional Leon of the Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado on the 18/SEP/2014. All patients signed an informed consent form.

References

  1. 1.
    W.H. Organization, Global status report on noncommunicable diseases (Geneva, Switzerland, 2014).Google Scholar
  2. 2.
    A.D. Association, Diabetes Care 37(3), 887 (2014).Google Scholar
  3. 3.
    D.M. Nathan, New England Journal of Medicine 328, 1676 (1993).Google Scholar
  4. 4.
    H. Pham, D.G. Armstrong, C. Harvey, L.B. Harkless, J.M. Giurini, A. Veves, Diabetes Care 23(5), 606 (2000).Google Scholar
  5. 5.
    note=A.J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, J. Apelqvist, The Lancet 366(9498), 1719 (2005),.Google Scholar
  6. 6.
    K. Shiraga, Y. Ogawa, T. Suzuki, N. Kondo, A. Irisawa, M. Imamura, Journal of Infrared, Millimeter, and Terahertz Waves 35(5), 493 (2014).Google Scholar
  7. 7.
    E. Pickwell, V.P. Wallace, Journal of Physics D: Applied Physics 39(17), R301 (2006).Google Scholar
  8. 8.
    Q. Sun, Y. He, K. Liu, S. Fan, E.P.J. Parrott, E. Pickwell-MacPherson, Quantitative Imaging in Medicine and Surgery 7(3), 345 (2017).Google Scholar
  9. 9.
    S.W. Smye, J.M. Chamberlain, A.J. Fitzgerald, E. Berry, Physics in Medicine and Biology 46(9), R101 (2001).Google Scholar
  10. 10.
    P.H. Siegel, IEEE Transactions on Microwave Theory and Techniques 52(10), 2438 (2004).Google Scholar
  11. 11.
    E. Castro-Camus, M. Palomar, A.A. Covarrubias, Scientific Reports 3, 2910 EP (2013).Google Scholar
  12. 12.
    Z.D. Taylor, R.S. Singh, M.O. Culjat, J.Y. Suen, W.S. Grundfest, H. Lee, E.R. Brown, Opt. Lett. 33(11), 1258 (2008).Google Scholar
  13. 13.
    P. Tewari, N. Bajwa, R.S. Singh, M.O. Culjat, W.S. Grundgest, Z.D. Taylor, C.P. Kealey, D.B. Bennett, K.S. Barnett, A. Stojadinovic, Journal of Biomedical Optics 17(4), 040503 (2012).Google Scholar
  14. 14.
    R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Physics in Medicine and Biology 47(21), 3853 (2002).Google Scholar
  15. 15.
    P.C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S.E. Pinder, A.D. Purushotham, M. Pepper, V.P. Wallace, Opt. Express 17(15), 12444 (2009).Google Scholar
  16. 16.
    F. Wahaia, G. Valusis, L.M. Bernardo, A. Almeida, J.A. Moreira, P.C. Lopes, J. Macutkevic, I. Kasalynas, D. Seliuta, R. Adomavicius, R. Henrique, M. Lopes, Journal of Molecular Structure 1006(1), 77 (2011).Google Scholar
  17. 17.
    L.H. Eadie, C.B. Reid, A.J. Fitzgerald, V.P. Wallace, Expert Systems with Applications 40(6), 2043 (2013).Google Scholar
  18. 18.
    C. Yu, S. Fan, Y. Sun, E. Pickwell-MacPherson, Quantitative Imaging in Medicine and Surgery 2(1), 33 (2012).Google Scholar
  19. 19.
    Z.D. Taylor, J. Garritano, S. Sung, N. Bajwa, D.B. Bennett, B. Nowroozi, P. Tewari, J.W. Sayre, J.P. Hubschman, S.X. Deng, E.R. Brown, W.S. Grundfest, IEEE Transactions on Terahertz Science and Technology 5(2), 184 (2015).Google Scholar
  20. 20.
    G.G. Hernandez-Cardoso, S.C. Rojas-Landeros, M. Alfaro-Gomez, A.I. Hernandez-Serrano, I. Salas-Gutierrez, E. Lemus-Bedolla, A.R. Castillo-Guzman, H.L. Lopez-Lemus, E. Castro-Camus, Scientific Reports 7, 42124 EP (2017).Google Scholar
  21. 21.
    H. Looyenga, Physica 31(3), 401 (1965).Google Scholar
  22. 22.
    H.J. Liebe, G.A. Hufford, T. Manabe, International Journal of Infrared and Millimeter Waves 12(7), 659 (1991).Google Scholar
  23. 23.
    P.U. Jepsen, U. Møller, H. Merbold, Opt. Express 15(22), 14717 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigaciones en Optica, A.C.LeonMexico
  2. 2.Laboratorio Nacional de Ciencia y Tecnologia de TerahertzLeonMexico
  3. 3.Departamento de Matematicas y Fisica, Centro de Ciencias Basicas.Universidad Autonoma de AguascalientesAguascalientesMexico
  4. 4.Hospital Angeles LeonLeonMexico

Personalised recommendations