Advertisement

Quantum Electric Dipole Lattice

Water Molecules Confined to Nanocavities in Beryl
  • Martin Dressel
  • Elena S. Zhukova
  • Victor G. Thomas
  • Boris P. Gorshunov
Article
  • 334 Downloads

Abstract

Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

Keywords

Water Quantum tunneling Dipolar interaction Ferroelectricity Dielectric spectroscopy THz spectroscopy Fourier transform infrared spectroscopy 

Notes

Acknowledgements

We would like to thank all our collaborator who participated to the project over the years, and colleagues we had intense discussion with M.A. Belyanchikov, H.-P. Büchler, D.A. Fursenko, M. Fyta, V.S. Gorelik, U. Kaatze, C. Kadlec, F. Kadlec, L.S. Kadyrov, R.K. Kremer, V.V. Lebedev, T. Ostapchuk, E.V. Pestrjakov, J. Petzelt, A.S. Prokhorov, J. Prokleska, M. Savinov, G.S. Shakurov, J. Smiatek, P.V. Tomas, V.I. Torgashev, S. Tretiak, F. Uhlig, V.V. Uskov, and A. Zhugayevych.

Funding Information

The work was supported by the Russian Ministry of Education and Science (Program 5top100), MIPT grant for visiting professors and Project N3.9896.2017/BY.

References

  1. 1.
    C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013).Google Scholar
  2. 2.
    L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017).Google Scholar
  3. 3.
    Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).Google Scholar
  4. 4.
    L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).Google Scholar
  5. 5.
    P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973).Google Scholar
  6. 6.
    P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983).Google Scholar
  7. 7.
    D.C. Johnston, Phys. Rev. B 93, 014421 (2016).Google Scholar
  8. 8.
    A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).Google Scholar
  9. 9.
    J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005).Google Scholar
  10. 10.
    M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012).Google Scholar
  11. 11.
    S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016).Google Scholar
  12. 12.
    B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).Google Scholar
  13. 13.
    K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979).Google Scholar
  14. 14.
    K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991).Google Scholar
  15. 15.
    J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996).Google Scholar
  16. 16.
    S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014).Google Scholar
  17. 17.
    K. Kuratobi and Y. Murata, Science 333, 613 (2011).Google Scholar
  18. 18.
    C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012).Google Scholar
  19. 19.
    A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).Google Scholar
  20. 20.
    F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012).Google Scholar
  21. 21.
    B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013).Google Scholar
  22. 22.
    E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014).Google Scholar
  23. 23.
    E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014).Google Scholar
  24. 24.
    B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014).Google Scholar
  25. 25.
    A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016).Google Scholar
  26. 26.
    Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017).Google Scholar
  27. 27.
    M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017).  https://doi.org/10.1039/C7CP06472A.
  28. 28.
    B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016).Google Scholar
  29. 29.
    A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411.Google Scholar
  30. 30.
    V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962).Google Scholar
  31. 31.
    R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016).Google Scholar
  32. 32.
    G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51.Google Scholar
  33. 33.
    B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005).Google Scholar
  34. 34.
    B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000).Google Scholar
  35. 35.
    B. A. Kolesov, J. Struct. Chem. 47, 21 (2006).Google Scholar
  36. 36.
    M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999).Google Scholar
  37. 37.
    M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002).Google Scholar
  38. 38.
    A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964).Google Scholar
  39. 39.
    T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997).Google Scholar
  40. 40.
    C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995).Google Scholar
  41. 41.
    F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972).Google Scholar
  42. 42.
    H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975).Google Scholar
  43. 43.
    H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).Google Scholar
  44. 44.
    H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991).Google Scholar
  45. 45.
    J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969).Google Scholar
  46. 46.
    M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
  47. 47.
    U. Kaatze, Physik Journal 15 (12), 19 (December 2016).Google Scholar
  48. 48.
    L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.1. Physikalisches InstitutUniversität StuttgartStuttgartGermany
  2. 2.Sobolev Institute of Geology and Mineralogy, SB RASNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations