Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 38, Issue 9, pp 1120–1129 | Cite as

Narrowband Metamaterial Absorber for Terahertz Secure Labeling

  • Magued Nasr
  • Jonathan T. Richard
  • Scott A. Skirlo
  • Martin S. Heimbeck
  • John D. Joannopoulos
  • Marin Soljacic
  • Henry O. EverittEmail author
  • Lawrence Domash


Flexible metamaterial films, fabricated by photolithography on a thin copper-backed polyimide substrate, are used to mark or barcode objects securely. The films are characterized by continuous-wave terahertz spectroscopic ellipsometry and visualized by a scanning confocal imager coupled to a vector network analyzer that constructed a terahertz spectral hypercube. These films exhibit a strong, narrowband, polarization- and angle-insensitive absorption at wavelengths near 1 mm. Consequently, the films are nearly indistinguishable at visible or infrared wavelengths and may be easily observed by terahertz imaging only at the resonance frequency of the film.


Metamaterial Terahertz imaging Ellipsometry Labeling 



This work was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001, and Triton Systems Internal Research and Development Program 1500-197. The authors wish to thank John Blum for his contributions to alternative fabrication methodologies.

Supporting Information

A video version of the terahertz hypercube images, sweeping through the hyperplanes one frequency at a time, can be viewed in the supplement.

Supplementary material

Video 1

(MP4 6.45 mb)


  1. 1.
    P. Siegel, 2003 THz technology: an overview, Terahertz Sensing Technology. Volume 1: Electronic Devices and Advanced Systems Technology, pp. 1–44, World Scientific, Singapore.Google Scholar
  2. 2.
    D. Mittleman, 2003 Sensing with Terahertz Radiation, Springer, New York.Google Scholar
  3. 3.
    H.O. Everitt and F.C. De Lucia, 2015 Detection and recognition of explosives using terahertz-frequency spectroscopic techniques. Laser-Based Optical Detection of Explosives, CRC Press, Taylor & Francis Group, Boca Raton.Google Scholar
  4. 4.
    H-T Chen, W J. Padilla, J M. O Zide, A C. Gossard, A J. Taylor, and R D. Averitt, Active terahertz metamaterial devices, Nature 2006, 444, 597–600.CrossRefGoogle Scholar
  5. 5.
    H-T Chen, W J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara, and A. J. Taylor, Electromagnetic metamaterials for THz applications, Terahertz Science and Technology 2008, 1 (1), 42–50.Google Scholar
  6. 6.
    N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Design, theory and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B 2009, 79, 125104.CrossRefGoogle Scholar
  7. 7.
    M. Diem, T. Koschny, and C. M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime, Phys. Rev. B 2009, 79, 033101.CrossRefGoogle Scholar
  8. 8.
    H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 2008, 78(24), 241103.Google Scholar
  9. 9.
    M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, Terahertz metamaterials fabricated by inkjet printing, Appl. Phys. Lett. 2009, 95 (25), 251107.CrossRefGoogle Scholar
  10. 10.
    X. Liu, M. Kanehara, C. Liu, K. Sakamoto, T. Yasuda, J. Takeya, T. Minari, Spontaneous patterning of high-resolution electronics via parallel vacuum ultraviolet, Adv. Mat. 2016, 28 (31), 6568–6573.CrossRefGoogle Scholar
  11. 11.
    Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations, Phys. Rev. Appl. 2015, 3, 037001.CrossRefGoogle Scholar
  12. 12.
    J. Yang, and Z. Shen. A thin and broadband absorber using double-square loops, IEEE Antennas and Wireless Propagation Lett, 2007, 6 , 388–391.CrossRefGoogle Scholar
  13. 13.
    H. Kim, J. S. Melinger, A. Khachatrian, N. A. Charipar, R. C. Y. Auyeung, and A. Piqué, Fabrication of terahertz metamaterials by laser printing, Optics Letters 2010, 35 (23), pp. 4039–4041.CrossRefGoogle Scholar
  14. 14.
    R. Ortu O C. Garc A. Meca, and A Martnez, Terahertz metamaterials on flexible polypropylene substrate, Plasmonics, 2014, 9 (5) pp. 1143–1147.CrossRefGoogle Scholar
  15. 15.
  16. 16.
    D. Ye, Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, L. Ran, Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces, IEEE Trans Antennas Prop. 2012, 60, 5164.CrossRefGoogle Scholar
  17. 17.
    T. Hofmann, C. M. Herzinger, A. Boosalis, T. E. Tiwald, J. A. Woollam, and M. Schubert, Variable-wavelength frequency-domain terahertz ellipsometry, Rev. Sci. Instrum. 2010, 81, 023101.CrossRefGoogle Scholar
  18. 18.
    J. M. Lau, J. W. Fowler, T. A. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollck, M. Halpern, D. Marsden, G. Marsden, Millimeter-wave antireflection coating for cryogenic silicon lenses, Appl. Opt. 2006, 45 (16), 3746–3751.CrossRefGoogle Scholar
  19. 19.
    A. Ali, M. M. Jatlaoui, S. Hebib, H. Aubert, D. Dragomirescu, 60 GHz Rectangular Patch Antennas on Flexible Substrate: Design and Experiment. Progress In Electromagnetics Research Symposium Abstracts, (Marrakesh, Morocco, Mar. Session 2P9: Poster Session 4, 610 20–23, 2011.Google Scholar
  20. 20.
    K. N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers, IEEE Trans. on Antennas and Propagation, 2000, 48 (8), 1230–1234.CrossRefGoogle Scholar
  21. 21.
    D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption, Phys. Rev. Lett. 2013, 111 , 187402.CrossRefGoogle Scholar
  22. 22.
    J. M. Woo, D. Kim, S. Hussain, and J.-H. Jang, Low-loss flexible bilayer metamaterials in THz regime. Opt. Exp. 2014, 22 (3), 2289–2298.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Magued Nasr
    • 1
  • Jonathan T. Richard
    • 2
  • Scott A. Skirlo
    • 3
  • Martin S. Heimbeck
    • 4
  • John D. Joannopoulos
    • 3
  • Marin Soljacic
    • 3
  • Henry O. Everitt
    • 4
    Email author
  • Lawrence Domash
    • 1
  1. 1.Triton Systems Inc.ChelmsfordUSA
  2. 2.IERUS TechnologiesHuntsvilleUSA
  3. 3.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.U.S. Army Aviation and Missile RD&E CenterRedstone ArsenalUSA

Personalised recommendations