Spanish Colonial Networks of Production: Earthenware Storage Vessels from The Peruvian Wine Industry

  • Nicola SharrattEmail author
  • Susan D. deFrance
  • P. Ryan Williams


Following Spanish conquest, wine and brandy production flourished in the Moquegua Valley in southern Peru. Alcohol products both served local demand and were shipped to high altitude mining centers. Wine was fermented and stored in tinajas, large earthenware ceramic vessels. Reporting analyses of paste composition of 70 tinajas using portable XRF technology, we examine the production of these vessels. Our results suggest that tinaja manufacture was localized in Moquegua but that valley wineries participated in varied production systems. Our analysis indicates that more sophisticated sourcing methods would refine the relationship among tinaja pastes, locally available clays, and production networks.


Andean South America Viticulture Ceramics Compositional analyses 



Thanks to the Biondi, Ghersi, and Valdivia families for graciously granting access to tinajas at their bodegas in the Moquegua Valley. Corey Bowen, David Reid, Zachary Spiezio, Robert Theberge and Ashley Vance contributed to data collection.


  1. Arnold, Dean, E. (2005). Linking society with the compositional analyses of pottery: a model from comparative ethnography. In Livingstone-Smith, A., Bosquet, D., and Martineau R. (eds.), Pottery Manufacturing Processes: Reconstitution and Interpretation. BAR International Series, Archaeopress, Oxford, pp 15–21.Google Scholar
  2. Baxter, M. J. (1994). Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press, Edinburgh.Google Scholar
  3. Baxter, M. J. (2001). Multivariate analysis in archaeology. In Brothwell, D. R. and Pollard, A. M. (eds.), Handbook of Archaeological Sciences, John Wiley, Chichester, pp. 685–694.Google Scholar
  4. Bennyhoff, J. A. and Heizer, R. F. (1965). Neutron activation analysis of some Cuicuilco and Teotihuacan pottery: Archaeological interpretations of the results. American Antiquity 30(3): 348–349.Google Scholar
  5. Brown, K. W. (1986). Bourbons and Brandy: Imperial Reform in Eighteenth-Century Arequipa. University of New Mexico Press, Albuquerque.Google Scholar
  6. Burger, R. L., and Glascock, M. D. (2000). Locating the Quispisisa obsidian source in the Department of Ayacucho, Peru. Latin American Antiquity 11(3): 258–268.CrossRefGoogle Scholar
  7. Cecil, L. G. (2004). Inductively coupled plasma emission spectroscopy and post classic Peten slipped pottery: an examination of pottery wares, social identity and trade. Archaeometry 46(3): 385–404.Google Scholar
  8. Cushner, N. P. (1975). Slave mortality and reproduction on Jesuit haciendas in colonial Peru. The Hispanic American Historical Review 55(2): 177–199.CrossRefGoogle Scholar
  9. Cushner, N. P. (1980). Lords of the Land: Sugar, Wine, and Jesuit Estates of Coastal Peru 1600-1767. State University of New York Press, Albany.Google Scholar
  10. Davies, K. A. (1984). Landowners in Colonial Peru. University of Texas Press, Austin.Google Scholar
  11. Fillieres, D., Harbottle, G., and Sayre, E. V. (1983). Neutron-activation study of figurines, pottery, and workshop materials from the Athenian agora, Greece. Journal of Field Archaeology 10(1): 55–69.Google Scholar
  12. Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by Neutron Activation Analysis. In Neff, H. (ed.), Chemical Characterization of Ceramic Pastes in Archaeology. Prehistory Press, Madison, WI, pp. 11–26.Google Scholar
  13. Glascock, M. D., Speakman, R. J., and Burger, R. L. (2007). Sources of archaeological obsidian in Peru: descriptions and geochemistry. In Glascock, M. D., Speakman, R. J., Popelka-Filcoff, R. S. (eds.), Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation. Oxford University Press, New York, pp. 524–555.Google Scholar
  14. Golitko, M. and Terrell, J. E. (2012). Mapping prehistoric social fields on the Sepik coast of Papua New Guinea: ceramic compositional analysis using laser ablation-inductively coupled plasma-mass spectrometry. Journal of Archaeological Science 39: 3568–3580.Google Scholar
  15. Hunt, A. M. W. and Speakman, R. J. (2015). Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science 53: 626–638.Google Scholar
  16. Hyams, E. (1965). Dionysus: A Social History of the Wine Vine. Macmillan, New York.Google Scholar
  17. Janusek, J. W., Williams, P. R., Golitko, M., and Lemuz Aguirre, C. (2013). Building Taypikala: Telluric transformations in the lithic production of Tiwanaku. In Tripcevich, N. and Vaughn, K. J. (eds.), Mining and Quarrying in the Ancient Andes: Sociopolitical, Economic, and Symbolic Dimensions. Springer, New York, pp. 65–97.Google Scholar
  18. Kennett, D. J., Neff, H., Glascock, M. D., and Masob, A. Z. (2001). A geochemical revolution: inductively coupled plasma mass spectrometry. The SAA Archaeological Record 1(1): 22–26.Google Scholar
  19. Kennett, D. J., Anderson, A. J., Cruz, M. J., Clark, G. R., and Summerhayes, G. R. (2004). Geochemical characterization of Lapita pottery via inductively coupled plasma-mass spectrometry (ICP-MS). Archaeometry 46(1): 35–46.CrossRefGoogle Scholar
  20. Levine, A., Stanish, C., Williams, P. R., Chavez, C., and Golitko, M. (2013). Trade and early state formation in the northern Titicaca Basin, Peru. Latin American Antiquity 24(3): 289–308.CrossRefGoogle Scholar
  21. Li, B., Greig, A., Zhao, J., Collerson, K. D., Quan, K., Meng, Y., and Ma, Z. (2005). ICP-MS trace element analysis of Song Dynasty porcelains from Ding, Jiexiu, and Guantai kilns, North China. Journal of Archaeological Science 32: 251–259.Google Scholar
  22. Little, N. C., Kosakowsky, L. J., Speakman, R. J., Glasock, M. D., and Lohse, J. C. (2004). Characterization of Maya pottery by INAA and ICP-MS. Journal of Radioanalytical and Nuclear Chemistry 262(1): 103–110.Google Scholar
  23. Mallory-Greenough, L. M., Greenough, J. D., and Owen, V. J. (1998). New data for old pots: trace-element characterization of ancient Egyptian pottery using ICP-MS. Journal of Archaeological Science 25: 85–97.Google Scholar
  24. Moholy-Nagy, H., Meierhoff, J., Golitko, M., and Kestle, C. (2013). An analysis of pXRF obsidian source attributions from Tikal, Guatemala. Latin American Antiquity 24(1): 72–97.CrossRefGoogle Scholar
  25. Neff, H. (2003). Analysis of Mesoamerican plumbate pottery surfaces by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Journal of Archaeological Science 30: 21–35.Google Scholar
  26. Neff, H., Larson, D. O., and Glascock, M. D. (1997). The evolution of Anasazi ceramic production and distribution: compositional evidence from a Pueblo III site in south-central Utah. Journal of Field Archaeology 24(4): 473–492.Google Scholar
  27. Niziolek, L. (2013). Earthenware production and distribution in the prehispanic Philippine polity of Tanjay: results from laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of Archaeological Science 40: 2824–2839.Google Scholar
  28. Palumbo, S., Golitko, M., Christensen, S., and Tietzer, G. (2015). Basalt source characterization in the highlands of western Panama using portable X-ray fluroescence (pXRF) analysis. Journal of Archaeological Science Reports 2: 61–68.CrossRefGoogle Scholar
  29. Pollard, M., Batt, C., Stern, B., and Young, S. M. M. (2007). Analytical Chemistry in Archaeology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  30. Rice, P. M. (1994). The kilns of Moquegua, Peru: Technology, excavations, and functions. Journal of Field Archaeology 21(3): 325–344.Google Scholar
  31. Rice, P. M. (1995). Wine and “Local Catholicism” in colonial Moquegua, Peru. Colonial Latin American Historical Review 4(4): 369–404.Google Scholar
  32. Rice, P. M. (1996a). The archaeology of wine: The wine and brandy Haciendas of Moquegua, Peru. Journal of Field Archaeology 23(2): 187–204.Google Scholar
  33. Rice, P. M. (1996b). Peru's colonial wine industry and its European background. Antiquity 70: 785–800.Google Scholar
  34. Rice, P. M. (1997). Wine and brandy production in colonial Peru: a historical and archaeological investigation. The Journal of Interdisciplinary History 27(3): 455–79.Google Scholar
  35. Rice, P. M. (2011). Vintage Moquegua: History, Wine, and Archaeology on a Colonial Peruvian Periphery. University of Texas Press, Austin.Google Scholar
  36. Rice, P. M. (2013). Time-Space Perspectives on Early Colonial Moquegua. University Press of Colorado, Boulder.Google Scholar
  37. Rice, P. M. and Ruhl, D. L. (1989). Archaeological Survey of the Moquegua Bodegas. In Rice, D. S., Stanish, C., Scarr, P. eds., Ecology, Settlement, and History in the Osmore Drainage BAR International Series. British Archaeological Reports, Oxford, pp. 479–501.Google Scholar
  38. Rice, P. M. and Smith, G. C. (1989). The Spanish colonial wineries of Moquegua, Peru. Historical Archaeology 23(2): 41–49.Google Scholar
  39. Rice, P. M. and Van Beck, S. (1993). The Spanish colonial kiln tradition of Moquequa, Peru. Historical Archaeology 27(4):65–81.Google Scholar
  40. Sharratt, N., Golitko, M., Williams, P. R., and Dussubieux, L. (2009). Ceramic production during the middle horizon; Wari and Tiwanaku clay procurement in the Moquegua Valley, Peru. Geoarchaeology 24(6): 792–820.CrossRefGoogle Scholar
  41. Sharratt, N., Golitko, M., and Williams, P. R. (2015). Pottery production, regional exchange and state collapse during the middle horizon (A.D. 500-1000): LA-ICP-MS analyses of Tiwanaku Pottery in the Moquegua Valley, Perú. Journal of Field Archaeology 40(4): 397–412.CrossRefGoogle Scholar
  42. Smith, G. C. (1991). Heard it through the Grapevine: Andean and European Contributions to Spanish Colonial Culture and Viticulture in Moquegua, Peru. Doctoral dissertation, University of Florida, Gainesville.Google Scholar
  43. Smith, G. C. (1997). Hispanic, Andean, and African influences in the Moquegua Valley of southern Peru. Historical Archaeology 31(1): 74–83.CrossRefGoogle Scholar
  44. Speakman, R. J. and Neff, H. (2002). Evaluation of painted pottery from the Mesa Verde region using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). American Antiquity 67(1): 137–144.Google Scholar
  45. Strazicich, N. M. (1998). Clay sources, pottery production, and regional economy in Chalchihuites, Mexico, AD 200 - 900. Latin American Antiquity 9(3): 259–274.CrossRefGoogle Scholar
  46. Van Beck, S. (1991). Spanish Colonial Kilns of Moquegua, Peru. Master's thesis, University of Florida, Gainesville.Google Scholar
  47. Vaughn, K. J. and Neff, H. (2004). Tracing the clay source of Nasca polychrome pottery: results from a preliminary raw material survey. Journal of Archaeological Science 31(11): 1577–1586.Google Scholar
  48. Weaver, B. J. M. (2012). Perspectivas para el desarrollo de una arqueología de la diáspora africana en el Perú: resultados preliminares del proyecto arqueológico Haciendas del Nasca. Allpanchis 80(2): 85–12.Google Scholar
  49. Weaver, B. J. M. (2015). “Fruit of the Wine, Work of Human Hands” An Archaeology and Ethnohistory of Slavery on the Jesuit Wine Haciendas of Nasca, Peru. Doctoral dissertation, Vanderbilt University, Nashville, TN.Google Scholar
  50. Weaver, B. J. M. (2018). Rethinking the political economy of slavery: the hacienda aesthetic at the Jesuit vineyards of Nasca, Peru. Post-Medieval Archaeology 52(1):117–133.Google Scholar
  51. Williams, P. R., Dussubieux, L., and Nash, D. J. (2012). Provenance of Peruvian Wari Obsidian: Comparing INAA, LA-ICP-MS, and Portable XRF. In Liritzis, I., Stevenson, C. eds., The Dating and Provenance of Volcanic and Ancient Manufactured Glasses - a Global Overview. University of New Mexico Press, Albuquerque, pp. 75–85.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnthropologyGeorgia State UniversityAtlantaUSA
  2. 2.Department of AnthropologyUniversity of FloridaGainesvilleUSA
  3. 3.AnthropologyField Museum of Natural HistoryChicagoUSA

Personalised recommendations