Advertisement

Technology, Knowledge and Learning

, Volume 24, Issue 4, pp 659–681 | Cite as

Sociograms: An Effective Tool For Decision Making in Social Learning

  • Marta ZorrillaEmail author
  • Mariana de Lima Silva
Original research
  • 115 Downloads

Abstract

In the last few years, social learning, i.e., learning based on the analysis and discussion of topics by means of social collaborative systems, mainly social network services such as Facebook or Twitter, has acquired a great importance and led many instructors and institutions to deploy courses that include activities to be performed in them. For effective learning, both teachers and learners are required to gain insight into how the interaction takes place and how the learning process evolves over the time. Given that the nature of this kind of learning is inherently social, the Social Network Analysis (SNA) theory is perfectly suitable for this purpose. Therefore, this paper proposes the use of sociograms, SNA representations, to answer many of the questions that both learners and teachers need to know to make the best decisions and act accordingly. Furthermore, several network settings are suggested and the interpretation of the most relevant centrality measures when applied to online social learning is provided. Finally, the usefulness of sociograms is shown by means of the analysis of the activity performed in a MOOC course hosted in OpenMOOC platform.

Keywords

Social network analysis Social learning analytics Graph mining Social learning 

Notes

Acknowledgements

We thank Taner Engin, a Turkish Erasmus Student, for his collaboration in the developing of the prototype and the software modules for extracting data from social network services. The research leading to these results has received partial funding from the European Community’s CIP CIP-ICT-PSP-2013-7-621127 - Programme under grant agreement No. 21127 and from Spanish Government under grant TIN2017-86520-C3-3-R B).

References

  1. Alario-Hoyos, C., Pérez-Sanagustín, M., Delgado-Kloos, C., Parada, H., & Munoz-Organero, M. (2014). Delving into participants’ profiles and use of social tools in moocs. IEEE Transactions on Learning Technologies, 7(3), 260–266.  https://doi.org/10.1109/TLT.2014.2311807.CrossRefGoogle Scholar
  2. Arnold, K. E., & Pistilli, M. D. (2012). Course signals at purdue: Using learning analytics to increase student success. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK ’12 (pp. 267–270). New York, NY: ACM.  https://doi.org/10.1145/2330601.2330666.
  3. Bakharia, A., & Dawson, S. (2011). Snapp: A bird’s-eye view of temporal participant interaction. In Proceedings of the 1st international conference on learning analytics and knowledge, LAK ’11 (pp. 168–173). New York, NY: ACM.  https://doi.org/10.1145/2090116.2090144.
  4. Barr, J., & Gunawardena, A. (2012). Classroom salon: A tool for social collaboration. In Proceedings of the 43rd ACM technical symposium on computer science education, SIGCSE ’12 (pp. 197–202). New York, NY: ACM.  https://doi.org/10.1145/2157136.2157196.
  5. Bayer, J., Bydzovská, H., Géryk, J., Obšıvac, T., & Popelınskỳ, L. (2012). Predicting drop-out from social behaviour of students. In Proceedings of the 5th international conference on educational data mining (pp. 103–109).Google Scholar
  6. Beck, F., Burch, M., Diehl, S., & Weiskopf, D. (2014). The state of the art in visualizing dynamic graphs. In R. Borgo, R. Maciejewski, & I. Viola (Eds.), EuroVis - STARs. The Eurographics Association.  https://doi.org/10.2312/eurovisstar.20141174.
  7. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120.  https://doi.org/10.1080/0022250X.1972.9989806.CrossRefGoogle Scholar
  8. Brewe, E., Kramer, L., & Sawtelle, V. (2012). Investigating student communities with network analysis of interactions in a physics learning center. Physical Review Special Topics-Physics Education Research, 8(1), 010101.CrossRefGoogle Scholar
  9. Brinton, C. G., Chiang, M., Jain, S., Lam, H., Liu, Z., & Wong, F. M. F. (2014). Learning about social learning in moocs: From statistical analysis to generative model. IEEE Transactions on Learning Technologies, 7(4), 346–359.  https://doi.org/10.1109/TLT.2014.2337900.CrossRefGoogle Scholar
  10. Brown, J. S., & Adler, R. P. (2008). Minds on fire: Open education, the long tail, and learning 2.0. Educause Review, 43(1), 16–32.Google Scholar
  11. Buckingham Shum, S., & Ferguson, R. (2012). Social learning analytics. Educational Technology & Society, 15(3), 3–26.Google Scholar
  12. Carley, K. M. (2014). ORA: A toolkit for dynamic network analysis and visualization (pp. 1219–1228). New York, NY: Springer.  https://doi.org/10.1007/978-1-4614-6170-8_309.CrossRefGoogle Scholar
  13. Clow, D. (2014). Data wranglers: Human interpreters to help close the feedback loop. In Proceedings of the fourth international conference on learning analytics and knowledge, LAK ’14 (pp. 49–53). New York, NY: ACM.  https://doi.org/10.1145/2567574.2567603.
  14. Crespo, P., & Antunes, C. (2012). Social networks analysis for quantifying students’ performance in teamwork. In Proceedings of the 5th international conference on educational data mining (pp. 234–235).Google Scholar
  15. Cuéllar, M. P., Delgado, M., & Pegalajar, M. C. (2011). Improving learning management through semantic web and social networks in e-learning environments. Expert Systems with Applications, 38(4), 4181–4189.  https://doi.org/10.1016/j.eswa.2010.09.080.CrossRefGoogle Scholar
  16. Dawson, S. (2010). Seeing the learning community: An exploration of the development of a resource for monitoring online student networking. British Journal of Educational Technology, 41(5), 736–752.  https://doi.org/10.1111/j.1467-8535.2009.00970.x.CrossRefGoogle Scholar
  17. Dawson, S., Tan, J. P. L., & McWilliam, E. (2011). Measuring creative potential: Using social network analysis to monitor a learners’ creative capacity. Australasian Journal of Educational Technology, 27(6), 924–942.CrossRefGoogle Scholar
  18. de Lima, M., & Zorrilla, M. (2017). Social networks and the building of learning communities: An experimental study of a social MOOC. The International Review of Research in Open and Distributed Learning 18(1). http://www.irrodl.org/index.php/irrodl/article/view/2630
  19. Dingyloudi, F., & Strijbos, J. W. (2018). Just plain peers across social networks: Peer-feedback networks nested in personal and academic networks in higher education. Learning, Culture and Social Interaction, 18, 86–112.  https://doi.org/10.1016/j.lcsi.2018.02.002.CrossRefGoogle Scholar
  20. Dowson, M., & McInerney, D. M. (2003). What do students say about their motivational goals?: Towards a more complex and dynamic perspective on student motivation. Contemporary Educational Psychology, 28(1), 91–113.  https://doi.org/10.1016/S0361-476X(02)00010-3.CrossRefGoogle Scholar
  21. Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Educational Technology & Society, 15, 58–76.Google Scholar
  22. Federico, P., Aigner, W., Miksch, S., Windhager, F., & Zenk, L. (2011). A visual analytics approach to dynamic social networks. In Proceedings of the 11th international conference on knowledge management and knowledge technologies, i-KNOW ’11 (pp. 47:1–47:8). New York, NY: ACM.  https://doi.org/10.1145/2024288.2024344.
  23. Ferguson, R., & Shum, S. B. (2012). Social learning analytics: five approaches. In S. Dawson, C. Haythornthwaite, S. B. Shum, D. Gasevic, & R. Ferguson (Eds.), Second international conference on learning analytics and knowledge, LAK 2012, Vancouver, BC, Canada, 29 April–02 May 2012. ACM (pp. 23–33).  https://doi.org/10.1145/2330601.2330616.
  24. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.CrossRefGoogle Scholar
  25. Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.CrossRefGoogle Scholar
  26. García-Saiz, D., Palazuelos, C., & Zorrilla, M. (2014). Data mining and social network analysis in the educational field: An application for non-expert users. In A. Peña Ayala (Ed.), Educational data mining (Vol. 524, pp. 411–439)., Studies in computational intelligence Berlin: Springer.  https://doi.org/10.1007/978-3-319-02738-8-15.CrossRefGoogle Scholar
  27. Garrido, C. M. C., Olazabalaga, I. M., & Ruiz, U. G. (2015). Redes sociales y aprendizaje cooperativo en un mooc. Revista complutense de educación, 26(1), 119–139.Google Scholar
  28. Gerstein, G. (2014). Experiences in self-determined learning, chap. In L-M. Blaschke, C. Kenyon, & S. Hase (Eds.), Moving from education 1.0 through education 2.0 towards education 3.0. (pp. 83–99). Scotts Valley: Create Space Independent Publishing Platform.Google Scholar
  29. Gómez Aguilar, D., García-Peñalvo, F., & Theron, R. (2014). Visual analytical model for educational data. In: 2014 9th Iberian conference on information systems and technologies (CISTI) (pp. 1–6).  https://doi.org/10.1109/CISTI.2014.6877098
  30. Hernández-García, A., González-González, I., Jiménez-Zarco, A. I., & Chaparro-Peláez, J. (2015). Applying social learning analytics to message boards in online distance learning: A case study. Computers in Human Behavior, 47, 68–80.  https://doi.org/10.1016/j.chb.2014.10.038.CrossRefGoogle Scholar
  31. Jan, S., & Vlachopoulos, P. (2018). Social network analysis: A framework for identifying communities in higher education online learning. Technology, Knowledge and Learning,.  https://doi.org/10.1007/s10758-018-9375-y.CrossRefGoogle Scholar
  32. Joubert, M., & Wishart, J. (2012). Participatory practices: Lessons learnt from two initiatives using online digital technologies to build knowledge. Computers & Education, 59(1), 110–119.CrossRefGoogle Scholar
  33. Keim, D., Kohlhammer, J., Ellis, G., & Mansmann, F. (Eds.). (2010). Mastering the information age solving problems with visual analytics. Germany: Eurographics Association.Google Scholar
  34. Kitto, K., Lupton, M., Davis, K., & Waters, Z. (2017). Designing for student-facing learning analytics. Australasian Journal of Educational Technology, 33(5), 152–168. 10.14742/ajet.3607.CrossRefGoogle Scholar
  35. Klovdahl, A., Potterat, J., Woodhouse, D., Muth, J., Muth, S., & Darrow, W. (1994). Social networks and infectious disease: The Colorado springs study. Social Science & Medicine, 38(1), 79–88.CrossRefGoogle Scholar
  36. Krebs, V. (2002). Mapping networks of terrorist cells. Connections, 24(3), 43–52.Google Scholar
  37. Leskovec, J. (2008). Dynamics of large networks. Ph.D. thesis, School of Computer Science, Pittsburgh, PA, USA. AAI3340652Google Scholar
  38. Longhi, M. T., Ribeiro Ribeiro, A. C., Rosas, F. W., Machado, L. R., & Behar, P. A. (2018). Social interactions in a virtual learning environment: Development and validation of the social map tool. In V. L. Uskov, R. J. Howlett, & L. C. Jain (Eds.), Smart education and e-learning 2017 (pp. 273–281). Cham: Springer.CrossRefGoogle Scholar
  39. Magogwe, J. M., Ntereke, B., & Phetlhe, K. R. (2014). Facebook and classroom group work: A trial study involving university of Botswana advanced oral presentation students. British Journal of Educational Technology,.  https://doi.org/10.1111/bjet.12204.CrossRefGoogle Scholar
  40. Martínez Maldonado, R., Kay, J., Yacef, K., & Schwendimann, B. (2012). An interactive teacher’s dashboard for monitoring groups in a multi-tabletop learning environment. In S. Cerri, W. Clancey, G. Papadourakis, & K. Panourgia (Eds.), Intelligent tutoring systems (Vol. 7315, pp. 482–492)., Lecture notes in computer science Berlin: Springer.  https://doi.org/10.1007/978-3-642-30950-2_62.CrossRefGoogle Scholar
  41. McClelland, D. (2009). Human motivation (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  42. McNely, B.J., Gestwicki, P.V., Hill, J.H., Parli-Horne, P., & Johnson, E. (2012). Learning analytics for collaborative writing: a prototype and case study. In S. Dawson, C. Haythornthwaite, S. B. Shum, D. Gasevic, & R. Ferguson (Eds.), Second international conference on learning analytics and knowledge, LAK 2012, Vancouver, BC, Canada, 29 April–02 May 2012. ACM (pp. 222–225).  https://doi.org/10.1145/2330601.2330616.
  43. Moreno, J. (1934). Who shall survive?. Boston: Beacon House.Google Scholar
  44. Palazuelos, C., & Zorrilla, M. (2011). FRINGE: A new approach to the detection of overlapping communities in graphs. In: B. Murgante, O. Gervasi, A. Iglesias, D. Taniar, & B. Apduhan (Eds.), Computational science and its applications—ICCSA 2011, lecture notes in computer science (Vol. 6784, pp. 638–653). Springer.Google Scholar
  45. Palazuelos, C., García-Saiz, D., & Zorrilla, M. (2013). Social network analysis and data mining: An application to the e-learning context. In International conference on computational collective intelligence technologies and applications.Google Scholar
  46. Palazuelos, C., García-Saiz, D., & Zorrilla, M. (2013). Social network analysis and data mining: An application to the e-learning context. In C. Badica, N. Nguyen, & M. Brezovan (Eds.), Computational collective intelligence. Technologies and applications (Vol. 8083, pp. 651–660)., Lecture notes in computer science Berlin: Springer.  https://doi.org/10.1007/978-3-642-40495-5_65.CrossRefGoogle Scholar
  47. Pandey, A. (2016). Why you should adopt social learning?. Bengaluru: EI Desigh.Google Scholar
  48. Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438–450.CrossRefGoogle Scholar
  49. Rabbany, R., Takaffoli, M., & Zaïane, O. (2011). Analyzing participation of students in online courses using social network analysis techniques. In Proceedings of the 4th international conference on educational data mining (pp. 21–30).Google Scholar
  50. Rabbany, R., Elatia, S., Takaffoli, M., & Zaïane, O. (2014). Collaborative learning of students in online discussion forums: A social network analysis perspective. In A. Peña Ayala (Ed.), Educational data mining (Vol. 524, pp. 441–466)., Studies in computational intelligence Berlin: Springer.  https://doi.org/10.1007/978-3-319-02738-8_16.CrossRefGoogle Scholar
  51. Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers & Education, 68, 458–472.  https://doi.org/10.1016/j.compedu.2013.06.009.CrossRefGoogle Scholar
  52. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 46(5), 30–32.Google Scholar
  53. Silius, K., Miilumäki, T., Huhtamäki, J., Tebest, T., & Meriläinen, J. (2010). Students’ motivations for social media enhanced studying and learning. Knowledge Management & E-Learning: An International Journal, 2, 51–67.Google Scholar
  54. Sobieski, C., & Dell’Angelo, T. (2016). Sociograms as a tool for teaching and learning: Discoveries from a teacher research study. The Educational Forum, 80(4), 417–429.  https://doi.org/10.1080/00131725.2016.1207734.CrossRefGoogle Scholar
  55. Sol, J., Beers, P. J., & Wals, A. E. (2013). Social learning in regional innovation networks: trust, commitment and reframing as emergent properties of interaction. Journal of Cleaner Production, 49, 35–43.  https://doi.org/10.1016/j.jclepro.2012.07.041.CrossRefGoogle Scholar
  56. Sundararajan, B. (2010). Emergence of the most knowledgeable other (mko): Social network analysis of chat and bulletin board conversations in a CSCL system. Electronic Journal of E-Learning, 8(2), 191–208.Google Scholar
  57. Teasley, S.D., & Whitmer, J. (2017). The impact of student-facing LMS dashboards. Technical report, School of Information, University of Michigan and Director of Analytics - Research Blackboard, Inc.Google Scholar
  58. Tobarra, L., Robles-Gómez, A., Ros, S., Hernández, R., & Caminero, A. C. (2014). Analyzing the students’ behavior and relevant topics in virtual learning communities. Computers in Human Behavior, 31, 659–669.  https://doi.org/10.1016/j.chb.2013.10.001.CrossRefGoogle Scholar
  59. Tobarra, L., Robles-Gómez, A., Ros, S., Hernández, R., & Caminero, A. C. (2014). Analyzing the students’ behavior and relevant topics in virtual learning communities. Computers in Human Behavior, 31, 659–669.  https://doi.org/10.1016/j.chb.2013.10.001.CrossRefGoogle Scholar
  60. Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Assche, F., Parra, G., et al. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18(6), 1499–1514.  https://doi.org/10.1007/s00779-013-0751-2.CrossRefGoogle Scholar
  61. Wagner, C. J., & Gonzalez-Howard, M. (2018). Studying discourse as social interaction: The potential of social network analysis for discourse studies. Educational Researcher, 47(6), 375–383.  https://doi.org/10.3102/0013189X18777741.CrossRefGoogle Scholar
  62. Wasserman, S., & Faust, K. (1994). Social Network analysis: Methods and applications., Structural analysis in the social sciences Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Watts, D., & Strogatz, S. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.CrossRefGoogle Scholar
  64. Weber, Z. A., & Vincent, A. H. (2014). Facebook as a method to promote a mindset of continual learning in an ambulatory care pharmacy elective course. Currents in Pharmacy Teaching and Learning, 6(4), 478–482.  https://doi.org/10.1177/1745691612442904.CrossRefGoogle Scholar
  65. Wenger, E. (2010). Communities of practice and social learning systems: The career of a concept (pp. 179–198). London: Springer.  https://doi.org/10.1007/978-1-84996-133-2_11.CrossRefGoogle Scholar
  66. Wilson, R. E., Gosling, S. D., & Graham, L. T. (2012). A review of facebook research in the social sciences. Perspectives on Psychological Science, 7(3), 203–220.  https://doi.org/10.1177/1745691612442904.CrossRefGoogle Scholar
  67. Zhu, B., Watts, S., & Chen, H. (2010). Visualizing social network concepts. Decision Support Systems, 49(2), 151–161.  https://doi.org/10.1016/j.dss.2010.02.001.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dpto. Ingeniería Informática y ElectrónicaUniversidad de CantabriaSantanderSpain
  2. 2.Dpto. EducaciónUniversidad de CantabriaSantanderSpain

Personalised recommendations