Twenty-First Century Skills for All: Adults and Problem Solving in Technology Rich Environments

  • Tatiana Iñiguez-BerrozpeEmail author
  • Ellen Boeren
Original research


The current Information Society requires new skills for personal, labor and social inclusion. Among the so-called Twenty-First Century Skills (Care et al. (eds) in Assessment and teaching of 21st century skills, Springer, New York, 2018) is Problem Solving in Technology Rich Environments (PS-TRE) competence evaluated in PISA and PIAAC tests (OECD in Survey of adult skills (PIAAC). Retrieved from (2016)). This skill, although currently receiving considerable attention in compulsory education, has not received the same level of thought in the case of adult education. In this article, the presence of the PS-TRE skill among adults of working age (25–65 years) in Europe is analysed in relation to the factors that potentially affect a higher score in this skill. This analysis is carried out using structural equations modelling, taking into account socio-personal and educational factors, as well as the use of different skills in work and daily life. The results indicate that educational level and the use of different skills (reading, numerical, related to ICT) at home and at work, as well as participation in non-formal education activities, decisively relate to a higher level of PS-TRE. This result is positively mediated through risk factors such as being older or being a woman. This study concludes that it is necessary to reinforce these skills, not only in children, but also in the adult population, in order to avoid social and labour exclusion.


Problem solving Adult education Technology Twenty-first century skills Inclusive education 



  1. Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the Game-Design and Learning (GDL) after-school program. Computers & Education, 75, 72–81.CrossRefGoogle Scholar
  2. Ballestero, F. (2002). La brecha digital. El riesgo de exclusión en la Sociedad de la Información (Fundación Retevisión).Google Scholar
  3. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational thinking in compulsory education—Implications for policy and practice; EUR 28295 EN;
  4. Boeren, E. (2009). Adult education participation: the Matthew principle. Filosofija-Sociologija, 20(2), 154–161.Google Scholar
  5. Boeren, E. (2016). Lifelong learning participation in a changing policy context: An interdisciplinary theory. London: Palgrave-Macmillan.CrossRefGoogle Scholar
  6. Bowles, S., Gintis, H., & Osborne, M. (2001). The determinants of earnings: A behavioral approach. Journal of Economic Literature, 39(4), 1137–1176.CrossRefGoogle Scholar
  7. Breen, R., & Karlson, K. B. (2014). Education and social mobility: New analytical approaches. European Sociological Review, 30(1), 107–118.CrossRefGoogle Scholar
  8. Bukodi, E., & Goldthorpe, J. H. (2012). Decomposing “social origins”: The effects of parents’ class, status, and education on the educational attainment of their children. European Sociological Review, 29(5), 1024–1039.CrossRefGoogle Scholar
  9. Byrne, B. (2010). Structural equation modeling with AMOS. London: Routledge.Google Scholar
  10. Calero, J., Murillo Huertas, I., & Raymond Bara, J. L. (2016). Education, age and skills: An analysis using the PIAAC survey. Working paper 2016/03 (Barcelona, IEB).Google Scholar
  11. Carbonaro, W. (2007). The effects of education and cognitive skill on earnings: How much do occupations and jobs matter? Research in Social Stratification and Mobility, 25(1), 57–71.CrossRefGoogle Scholar
  12. Care, E. (2018). Twenty-first century skills: From theory to action. In E. Care, G. Griffin, & M. Wilson (Eds.), Assessment and teaching of 21st century skills. Springer: New York.CrossRefGoogle Scholar
  13. Care, E., Griffin, G., & Wilson, M. (Eds.). (2018). Assessment and teaching of 21st century skills. New York: Springer.Google Scholar
  14. Castells, M. (2002). The information age: Economy, society and culture. Oxford: Blackwell Publishing.Google Scholar
  15. Christl, M., & Köppl-Turyna, M. (2017). Gender wage gap and the role of skills: Evidence from PIAAC dataset, GLO discussion paper, 63.Google Scholar
  16. Collins, H., & Evans, R. (2007). Rethinking expertise. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  17. Compaine, B. (2001). Digital divide. Cambridge, Massachussets: The MIT Press.CrossRefGoogle Scholar
  18. Csapó, B., & Funke, J. (Eds.). (2017). The nature of problem solving. Using research to inspire 21st century learning. Paris: OECD Publishing.Google Scholar
  19. Cunha, F., & Heckman, J. (2007). The technology of skill formation. American Economic Review, 97(2), 31–47.CrossRefGoogle Scholar
  20. Cunha, F., Heckman, J., & Schennach, S. (2010). Estimating the technology of cognitive and noncognitive skill formation. Econometrica, Econometric Society, 78(3), 883–931.CrossRefGoogle Scholar
  21. Desjardins, R. (2003). Determinants of literacy proficiency: A lifelong–lifewide learning perspective. International Journal of Educational Research, 39, 205–245.CrossRefGoogle Scholar
  22. Desjardins, R., & Warnke, A. J. (2012). Ageing and skills. A review and analysis of skill gain and skill loss over the lifespan and over time. Paris: OECD.Google Scholar
  23. Estefanía, J. (2003). La cara oculta de la prosperidad Economía para todos. Madrid: Taurus.Google Scholar
  24. Eurostat. (2017). Population data. Accessed 12 May 2018.
  25. Flyvberg, B. (2001). Making social science matter. Why social inquiry fails and how it can succeed again. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Goos, M. (2013). How the world of work is changing: A review of the evidence, ILO research paper, pp. 1–54. Accessed 12 May 2018.
  27. Griffin, P., McGaw, B., & Care, E. (Eds.). (2012). Assessment and teaching of 21st century skills. Dordrecht: Springer.Google Scholar
  28. Habermas, J. (1987). Teoría de la acción comunicativa. Vol. I. Racionalidad de la acción y racionalización social. Vol. II. Crítica de la razón funcionalista. Madrid: Taurus.Google Scholar
  29. Hämäläinen, R., De Wever, B., Malin, A., & Cincinnato, S. (2015). Education and working life: VET adults’ problem-solving skills in technology-rich environments. Computers & Education, 88, 38–47.CrossRefGoogle Scholar
  30. Hämäläinen, R., De Wever, B., Nissinen, K., & Cincinnato, S. (2017). Understanding adults’ strong problem-solving skills based on PIAAC. Journal of Workplace Learning, 29(7/8), 537–553. Scholar
  31. Hanushek, E. A. (2015). Returns to skills around the world: Evidence from PIAAC. European Economic Review, 73, 103–130.CrossRefGoogle Scholar
  32. Harris, K. (2015). Integrating digital literacy into English language instruction: Issue brief. Accessed 12 May 2018.
  33. Harteis, C., & Billett, S. (2013). Intuitive expertise: Theories and empirical evidence. Educational Research Review, 9, 145–157.CrossRefGoogle Scholar
  34. Holford, J., & Mohorčič Špolar, V. A. (2012). Neoliberal and inclusive themes in European lifelong learning policy. In S. Riddell, J. Markowitsch, & E. Weedon (Eds.), Lifelong learning in Europe: Equity and efficiency in the balance. Bristol: Policy Press.Google Scholar
  35. Iñiguez-Berrozpe, T., Marcaletti, F. (2017). Más allá de las TIC. Aprendizaje Permanente para una Sociedad de la Información Inclusiva. Revista Digital EnTERA2.0, 5, 39–53.Google Scholar
  36. Iñiguez-Berrozpe T., Valero-Errazu, D., Elboj-Saso, C. (2018). Hacia una Sociedad de la Información inclusiva. Competencia tecnológica y habilidades relacionadas con las Tecnologías de la Información y la Comunicación (TIC) de los adultos maduros. Revista Mediterránea de Comunicación, 9(2), 25–40.CrossRefGoogle Scholar
  37. Isphording, I. E. (2014). Disadvantages of linguistic origin—Evidence from immigrant literacy scores. Economics Letters, 123(2), 236–239.CrossRefGoogle Scholar
  38. Jacobson, E. (2012). Adult basic education in the age of new literacies. New Literacies and Digital Epistemologies. New York: Peter Lang.Google Scholar
  39. Jerrim, J., & Macmillan, L. (2015). Income inequality, intergenerational mobility, and the Great Gatsby curve: Is education the key? Social Forces, 94(2), 1–29.CrossRefGoogle Scholar
  40. Kerckhoff, A. C. (2001). Education and social stratification processes in comparative perspective. Sociology of Education, 74, 3–18.CrossRefGoogle Scholar
  41. Marks, G. N. (2006). Accounting for immigrant non-immigrant differences in reading and mathematics in twenty countries. Ethnic and Racial Studies, 28(3), 925–946.Google Scholar
  42. Newman, A., Rosbash, T., & Sarkisian, L. (2015). Learning for life: The opportunity for technology to transform adult education. Tyton Partners. Accessed 12 May 2018.
  43. OECD. (2009). PIAAC problem solving in technology-rich environments: A conceptual framework. Accessed 12 May 2018.
  44. OECD. (2012). Literacy, numeracy and problem solving in technology-rich environments: Framework for the OECD survey of adult skills. Paris: OECD Publishing. Accessed 12 May 2018.CrossRefGoogle Scholar
  45. OECD. (2013). OECD skills outlook 2013: First results from the survey of adult skills. OECD Publishing. Accessed 12 May 2018.
  46. OECD. (2016). Survey of adult skills (PIAAC). Retrieved from Accessed 12 May 2018.
  47. P21-Partnership for 21st Century Learning. (2017). P21’s framework for 21st century learning. Accessed 12 May 2018.
  48. Pérez, E., Medrano, L. A., & Sánchez Rosas, J. (2013). El Path Analysis: Conceptos básicos y ejemplos de aplicación. Revista Argentina de Ciencias del Comportamiento, 5(1), 52–66.Google Scholar
  49. Rampey, B. D., Finnegan, R., Goodman, M., Mohadjer, L., Krenzke, T., Hogan, J., et al. (2016). Skills of U.S. unemployed, young, and older adults in sharper focus: Results from the Program for the International Assessment of Adult Competencies (PIAAC) 2012/2014: First Look (NCES 2016-039). Washington DC: American Institutes for Research.Google Scholar
  50. Reder, S. (2015). Digital inclusion and digital literacy in the United States: A portrait from PIAAC’s Survey of Adult Skills. Washington DC: American Institutes for Research.Google Scholar
  51. Scandurra, R., & Calero, J. (2017). Modelling adult skills in OECD countries. British Educational Research Journal, 43(4), 781–804.CrossRefGoogle Scholar
  52. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodnessof-fit measures. Methods of Psychological Research Online, 8(2), 23–74.Google Scholar
  53. Trawick, A. R. (2017). Using the PIAAC literacy framework to guide instruction: An introduction for adult educators. Washington, DC: PIAAC.Google Scholar
  54. Tynjälä, P. (2013). Toward a 3-P model of workplace learning: A literature review. Vocations and Learning: Studies in Vocational and Professional Education, 6(1), 11–36.CrossRefGoogle Scholar
  55. Tynjälä, P., Häkkinen, P., & Hämäläinen, R. (2014). TEL@work—Towards integration of theory and practice. British Journal of Educational Technology, 45(6), 990–1000.CrossRefGoogle Scholar
  56. Van Greunen, D., & Steyn, J. (2015). ICTs for inclusive communities in developing societies. London: Cambridge Scholars Publishing.Google Scholar
  57. Vandenberg, R. J. (2006). Statistical and methodological myths and urban legend. Organizational Research Methods, 9(2), 194–201.CrossRefGoogle Scholar
  58. Vanek, J. (2017). Using the PIAAC framework for problem solving in technology-rich environments to guide instruction: An introduction for adult educators. Washington, DC: PIAAC.Google Scholar
  59. Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning environment. Egyptian Computer Science Journal (ECS), 36(4), 28–46.Google Scholar
  60. Wing, J. (2014). Computational thinking benefits society. Social issues in computing. Accessed 12 May 2018.
  61. Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging competence domain. In M. Mulder (Ed.), Competence-based vocational and professional education. Switzerland: Springer.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of ZaragozaZaragozaSpain
  2. 2.University of EdinburghEdinburghUK

Personalised recommendations