Advertisement

Inflammation

pp 1–12 | Cite as

The Anti-fibrotic and Anti-inflammatory Potential of Bone Marrow–Derived Mesenchymal Stem Cells and Nintedanib in Bleomycin-Induced Lung Fibrosis in Rats

  • E. S. GadEmail author
  • A. A. A. Salama
  • M. F. El-Shafie
  • H. M. M. Arafa
  • R. M. Abdelsalam
  • M. Khattab
Original Article
  • 203 Downloads

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive lung damage. Tyrosine kinase inhibitors are approved to treat people with IPF while bone marrow–derived mesenchymal stem cell therapy was previously suggested to inhibit pulmonary fibrosis through the alveolar epithelial cell repair. The present study aimed to evaluate the anti-inflammatory and anti-fibrotic effect of the bone marrow–derived mesenchymal stem cell (BM-MSC) therapy in comparison with nintedanib, a tyrosine kinase inhibitor, on improving survival in bleomycin-induced lung fibrosis in rats. Moreover, the combined therapy of BM-MSCs and nintedanib will be evaluated. In the present study, IPF was induced through intra-tracheal instillation of bleomycin (5 mg/kg) in rats then treatments were administered 14 days thereafter. Nintedanib (100 mg/kg, I.P.) was administered daily for 28 days, while BM-MSCs were injected once intravenously in tail vein in the dose 1 × 106 cells/ml/rat. In the present study, both treatment regimens effectively inhibited lung fibrosis through several pathways, suppressing tumor growth factor-β (TGF-β)/SMAD3 expression which is considered the master signaling pathway. Nintedanib and BLM-MSCs exerted their anti-inflammatory effect through minimizing the expression of TNF-α and IL-6. In addition, the histopathological examination of the lung tissue showed a significant decrease in the alveolar wall thickening, in the inflammatory infiltrate, and in the collagen fiber deposition in response to either nintedanib or BM-MSC and their combination. In conclusion, the therapeutic pulmonary anti-fibrotic activity of nintedanib or BM-MSC is mediated through their anti-inflammatory properties and inhibition of SMAD-3/TGF-β expression.

KEY WORDS

bleomycin nintedanib BM-MSCs IL-6 TNF-α SMAD-3/TGF-β 

Notes

Acknowledgments

The technical assistance of the Professor of Pathology Sahar S Abd El-Rahman, Faculty of Veterinary Medicine, Cairo University is gratefully acknowledged.

Compliance with Ethical Standards

All experimental procedures were approved by the research ethics committee at Faculty of Pharmacy, Cairo University, Egypt in accordance with “Guide for the Care and Use of Laboratory Animals,” 1996.

References

  1. 1.
    Raghu, G., K.K. Brown, H.R. Collard, V. Cottin, K.F. Gibson, R.J. Kaner, D.J. Lederer, F.J. Martinez, P.W. Noble, J.W. Song, A.U. Wells, T.P. Whelan, W. Wuyts, E. Moreau, S.D. Patterson, V. Smith, S. Bayly, J.W. Chien, Q. Gong, J.J. Zhang, and T.G. O’Riordan. 2017. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. The Lancet Respiratory Medicine 5: 22–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chandler, D.B. 1990. Possible mechanisms of bleomycin-induced fibrosis. Clinics in Chest Medicine 11: 21–30.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Douglas, W.W., J.H. Ryu, and D.R. Schroeder. 2000. Idiopathic pulmonary fibrosis: impact of oxygen and colchicine, prednisone, or no therapy on survival. American Journal of Respiratory and Critical Care Medicine 161: 1172–1178.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Horowitz, J.C., Z. Cui, T.A. Moore, T.R. Meier, R.C. Reddy, G.B. Toews, T.J. Standiford, and V.J. Thannickal. 2006. Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. American Journal of Physiology. Lung Cellular and Molecular Physiology 290: L415–L425.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Biernacka, A., M. Cavalera, J. Wang, I. Russo, A. Shinde, P. Kong, C. Gonzalez-Quesada, V. Rai, M. Dobaczewski, D.W. Lee, X.F. Wang, and N.G. Frangogiannis. 2015. Smad3 signaling promotes fibrosis while preserving cardiac and aortic geometry in obese diabetic mice. Circulation. Heart Failure 8: 788–798.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Blobe, G.C., W.P. Schiemann, and H.F. Lodish. 2000. Role of transforming growth factor beta in human disease. The New England Journal of Medicine 342: 1350–1358.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Massague, J. 1996. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85: 947–950.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Grimminger, F., A. Gunther, and C. Vancheri. 2015. The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. The European Respiratory Journal 45: 1426–1433.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Beyer, C., and J.H. Distler. 2013. Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochimica et Biophysica Acta 1832: 897–904.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Varone, F., G. Sgalla, B. Iovene, T. Bruni, and L. Richeldi. 2018. Nintedanib for the treatment of idiopathic pulmonary fibrosis. Expert Opinion on Pharmacotherapy 19: 167–175.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Friedenstein, A.J., R.K. Chailakhjan, and K.S. Lalykina. 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics 3: 393–403.PubMedGoogle Scholar
  12. 12.
    Uccelli, A., L. Moretta, and V. Pistoia. 2008. Mesenchymal stem cells in health and disease. Nature Reviews. Immunology 8: 726–736.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, L., T. Wang, X. Wang, B.B. Sun, J.Q. Li, D.S. Liu, S.F. Zhang, L. Liu, D. Xu, Y.J. Chen, and F.Q. Wen. 2009. Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats. Respiratory Research 10: 55.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gazdhar, A., N. Susuri, K. Hostettler, M. Gugger, L. Knudsen, M. Roth, M. Ochs, and T. Geiser. 2013. HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. PLoS One 8: e65453.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Felix, R.G., A.T. Fabro, J.C. Vicentini-Oliveira, E.H. Bianchi, M. de Assis Golim, O.S. Cotrim, J.T. RibeiroPaes, and E. Deffune. 2016. Rat mesenchymal stem cells from adipose tissue reduce bleomycin-induced lung remodeling in late stage. Stem Cell Discovery 6: 24–38.CrossRefGoogle Scholar
  16. 16.
    Pittelli, M., V. Pitozzi, P. Caruso, M. Bonatti, G. Aquino, M. Biagetti, C. Frati, C.M. Mangiaracina, F. Quaini, C. Lagrasta, P. Puccini, M. Delcanale, M. Civelli, G. Villetti, and M. Trevisani. 2017. Effect of nintedanib in a rat model of lung fibrosis induced by single or double bleomycin administration. The European Respiratory Journal 50: PA2956.Google Scholar
  17. 17.
    Abeer, A., F.Z. Hala, M.S. Siham, E.S.M. EL-Denshary, and K.I. Ismaiel. 2015. Anti-asthmatic effects of evening primrose oil in ovalbumin-allergic rats. Der Pharmacia Lettre 7: 214–223.Google Scholar
  18. 18.
    Alhadlaq, A., and J.J. Mao. 2004. Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development 13: 436–448.PubMedCrossRefGoogle Scholar
  19. 19.
    Jaiswal, N., S.E. Haynesworth, A.I. Caplan, and S.P. Bruder. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry 64: 295–312.PubMedCrossRefGoogle Scholar
  20. 20.
    Seo, M.S., Y.H. Jeong, J.R. Park, S.B. Park, K.H. Rho, H.S. Kim, K.R. Yu, S.H. Lee, J.W. Jung, Y.S. Lee, and K.S. Kang. 2009. Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. Journal of Veterinary Science 10: 181–187.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mohi El-Din, M.M., L.A. Rashed, M.A. Mahmoud Haridy, A.M. Khalil, and M.A. Mohamed Albadry. 2017. Impact of bone marrow-derived mesenchymal stem cells on remodeling the lung injury induced by lipopolysaccharides in mice. Future Science OA 3: FSO162.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sleijfer, S. 2001. Bleomycin-induced pneumonitis. Chest 120: 617–624.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ferrando, A.A., A.M. Pendas, E. Llano, G. Velasco, R. Lidereau, and C. Lopez-Otin. 1997. Gene characterization, promoter analysis, and chromosomal localization of human bleomycin hydrolase. The Journal of Biological Chemistry 272: 33298–33304.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rangarajan, S., A. Kurundkar, D. Kurundkar, K. Bernard, Y.Y. Sanders, Q. Ding, V.B. Antony, J. Zhang, J. Zmijewski, and V.J. Thannickal. 2016. Novel mechanisms for the antifibrotic action of nintedanib. American Journal of Respiratory Cell and Molecular Biology 54: 51–59.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wollin, L., I. Maillet, V. Quesniaux, A. Holweg, and B. Ryffel. 2014. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. The Journal of Pharmacology and Experimental Therapeutics 349: 209–220.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hostettler, K.E., A. Gazdhar, P. Khan, S. Savic, L. Tamo, D. Lardinois, M. Roth, M. Tamm, and T. Geiser. 2017. Multipotent mesenchymal stem cells in lung fibrosis. PLoS One 12: e0181946.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tashiro, J., G.A. Rubio, A.H. Limper, K. Williams, S.J. Elliot, I. Ninou, V. Aidinis, A. Tzouvelekis, and M.K. Glassberg. 2017. Exploring animal models that resemble idiopathic pulmonary fibrosis. Frontiers in Medicine (Lausanne) 4: 118.CrossRefGoogle Scholar
  29. 29.
    Tzouvelekis, A., R. Toonkel, T. Karampitsakos, K. Medapalli, I. Ninou, V. Aidinis, D. Bouros, and M.K. Glassberg. 2018. Mesenchymal stem cells for the treatment of idiopathic pulmonary fibrosis. Frontiers in Medicine (Lausanne) 5: 142.CrossRefGoogle Scholar
  30. 30.
    Reinert, T., C.S. Baldotto, F.A. Nunes, and A.A. Scheliga. 2013. Bleomycin-induced lung injury. Journal of Cancer Research 2013: Article ID 480608.CrossRefGoogle Scholar
  31. 31.
    Ahluwalia, N., B.S. Shea, and A.M. Tager. 2014. New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. American Journal of Respiratory and Critical Care Medicine 190: 867–878.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Dimitroulis, I.A. 2014. Nintedanib: a novel therapeutic approach for idiopathic pulmonary fibrosis. Respiratory Care 59: 1450–1455.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hostettler, K.E., J. Zhong, E. Papakonstantinou, G. Karakiulakis, M. Tamm, P. Seidel, Q. Sun, J. Mandal, D. Lardinois, C. Lambers, and M. Roth. 2014. Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respiratory Research 15: 157.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wollin, L., E. Wex, A. Pautsch, G. Schnapp, K.E. Hostettler, S. Stowasser, and M. Kolb. 2015. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. The European Respiratory Journal 45: 1434–1445.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lehtonen, S.T., A. Veijola, H. Karvonen, E. Lappi-Blanco, R. Sormunen, S. Korpela, U. Zagai, M.C. Skold, and R. Kaarteenaho. 2016. Pirfenidone and nintedanib modulate properties of fibroblasts and myofibroblasts in idiopathic pulmonary fibrosis. Respiratory Research 17: 14.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Samarakoon, R., J.M. Overstreet, and P.J. Higgins. 2013. TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cellular Signalling 25: 264–268.PubMedCrossRefGoogle Scholar
  37. 37.
    Lehmann, M., L. Buhl, H.N. Alsafadi, S. Klee, S. Hermann, K. Mutze, C. Ota, M. Lindner, J. Behr, A. Hilgendorff, D.E. Wagner, and M. Konigshoff. 2018. Differential effects of nintedanib and pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respiratory Research 19: 175.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Min, J.H., H.Y. Lee, H. Lim, M.J. Ahn, K. Park, M.P. Chung, and K.S. Lee. 2011. Drug-induced interstitial lung disease in tyrosine kinase inhibitor therapy for non-small cell lung cancer: a review on current insight. Cancer Chemotherapy and Pharmacology 68: 1099–1109.PubMedCrossRefGoogle Scholar
  39. 39.
    Garcia, O., G. Carraro, G. Turcatel, M. Hall, S. Sedrakyan, T. Roche, S. Buckley, B. Driscoll, L. Perin, and D. Warburton. 2013. Amniotic fluid stem cells inhibit the progression of bleomycin-induced pulmonary fibrosis via CCL2 modulation in bronchoalveolar lavage. PLoS One 8: e71679.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Reddy, M., L. Fonseca, S. Gowda, B. Chougule, A. Hari, and S. Totey. 2016. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis: comparison with pirfenidone. International Journal of Stem Cells 9: 192–206.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tzouvelekis, A., P. Ntolios, and D. Bouros. 2013. Stem cell treatment for chronic lung diseases. Respiration 85: 179–192.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
  2. 2.Department of PharmacologyNational Research CentreCairoEgypt
  3. 3.Department of Pharmacology and Toxicology, Faculty of PharmacyHeliopolis UniversityCairoEgypt
  4. 4.Department of Pharmacology and Toxicology, Faculty of PharmacyAl-Ahram Canadian UniversityCairoEgypt
  5. 5.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations