Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review

  • Danbin Wu
  • Yefei Chen
  • Yingxin Sun
  • Qing Gao
  • Huhu Li
  • Zhengfei Yang
  • Yangxue Wang
  • Xijuan JiangEmail author
  • Bin YuEmail author


MCC950 has been proposed as a specific small molecule inhibitor that can selectively block NLRP3 inflammasome activation. However, the exact mechanism of its action is still ambiguous. Accumulating investigations imply that chloride efflux–dependent ASC speck oligomerization and potassium efflux–dependent activation of caspase-1 are the two relatively independent, but indispensable events for NLRP3 inflammasome activation. Previous studies suggested that influence of MCC950 on potassium efflux and its consequent events such as interaction between NEK7 and NLRP3 are limited. However, inhibiting chloride intracellular channel–dependent chloride efflux leads to a modification of inflammatory response, which is similar to the function of MCC950. Based on these findings, we shed new insights on the understanding of MCC950 that its function might correlate with chloride efflux, chloride intracellular channels, or other targets that act upstream of chloride efflux.


NLRP3 MCC950 potassium efflux NEK7 ASC chloride efflux 


Funding Information

This work was supported by the National Natural Science Foundation of China (No. 81873130, No. 81573733, No. 81804025), Tianjin Municipal Natural Science Foundation (No. 18JCYBJC94500), Scientific and Technological Research Program of Tianjin Municipal Education Commission (No. 2017KJ164), and 2017 Annual Graduate Students Innovation Fund (School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; No. CXJJLX201701).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fabio Martinon, K.B. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL. Molecular Cell 10: 417–426.CrossRefGoogle Scholar
  3. 3.
    Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharma BR, Karki R, Kanneganti TD. 2019. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. European Journal of Immunology.Google Scholar
  5. 5.
    Zhou, W., C. Chen, Z. Chen, L. Liu, J. Jiang, Z. Wu, M. Zhao, and Y. Chen. 2018. NLRP3: a novel mediator in cardiovascular disease. Journal of Immunology Research 2018: 5702103.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Sepehri, Z., Z. Kiani, M. Afshari, F. Kohan, A. Dalvand, and S. Ghavami. 2017. Inflammasomes and type 2 diabetes: an updated systematic review. Immunology Letters 192: 97–103.CrossRefGoogle Scholar
  7. 7.
    Shen, H.H., Y.X. Yang, X. Meng, X.Y. Luo, X.M. Li, Z.W. Shuai, D.Q. Ye, and H.F. Pan. 2018. NLRP3: a promising therapeutic target for autoimmune diseases. Autoimmunity Reviews 17: 694–702.CrossRefGoogle Scholar
  8. 8.
    Szekanecz, Z., S. Szamosi, G.E. Kovacs, E. Kocsis, and S. Benko. 2019. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Archives of Biochemistry and Biophysics 670: 82–93.CrossRefGoogle Scholar
  9. 9.
    Perera, A.P., R. Fernando, T. Shinde, R. Gundamaraju, B. Southam, S.S. Sohal, A.A.B. Robertson, K. Schroder, D. Kunde, and R. Eri. 2018. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Scientific Reports 8: 8618.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coates, B.M., K.L. Staricha, N. Ravindran, C.M. Koch, Y. Cheng, J.M. Davis, D.K. Shumaker, and K.M. Ridge. 2017. Inhibition of the NOD-like receptor protein 3 inflammasome is protective in juvenile influenza A virus infection. Scientific Reports 8: 782.Google Scholar
  11. 11.
    Honda, H., Y. Nagai, T. Matsunaga, N. Okamoto, Y. Watanabe, K. Tsuneyama, H. Hayashi, I. Fujii, M. Ikutani, Y. Hirai, A. Muraguchi, and K. Takatsu. 2014. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Journal of Leukocyte Biology 96: 1087–1100.CrossRefGoogle Scholar
  12. 12.
    Lamkanfi, M., J.L. Mueller, A.C. Vitari, S. Misaghi, A. Fedorova, K. Deshayes, W.P. Lee, H.M. Hoffman, and V.M. Dixit. 2009. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. The Journal of Cell Biology. 187: 61–70.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coll, R.C., A.A. Robertson, J.J. Chae, S.C. Higgins, R. Munoz-Planillo, M.C. Inserra, I. Vetter, L.S. Dungan, B.G. Monks, A. Stutz, D.E. Croker, M.S. Butler, M. Haneklaus, C.E. Sutton, G. Nunez, E. Latz, D.L. Kastner, K.H. Mills, S.L. Masters, K. Schroder, M.A. Cooper, and L.A. O'Neill. 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine 21: 248–255.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Perregaux, D.G., P. McNiff, R. Laliberte, N. Hawryluk, H. Peurano, E. Stam, J. Eggler, R. Griffiths, M.A. Dombroski, and C.A. Gabel. 2001. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. The Journal of Pharmacology and Experimental Therapeutics. 299: 187–197.PubMedGoogle Scholar
  15. 15.
    Primiano, M.J., and B.A. Lefker. 2016. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary. Inflammation. 197: 2421–2433.Google Scholar
  16. 16.
    van der Heijden, T., E. Kritikou, W. Venema, J. van Duijn, P.J. van Santbrink, B. Slutter, A.C. Foks, I. Bot, and J. Kuiper. 2017. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology 37: 1457–1461.CrossRefGoogle Scholar
  17. 17.
    Ward, R., W. Li, Y. Abdul, L. Jackson, G. Dong, S. Jamil, J. Filosa, S.C. Fagan, and A. Ergul. 2019. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacological Research 142: 237–250.CrossRefGoogle Scholar
  18. 18.
    Qu, J., Z. Yuan, G. Wang, X. Wang, and K. Li. 2019. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. International Immunopharmacology 70: 147–155.CrossRefGoogle Scholar
  19. 19.
    Schuh, E., C.J. Gross, D. Wagner, M. Schluter, O. Gross, and T. Kumpfel. 2019. MCC950 blocks enhanced interleukin-1beta production in patients with NLRP3 low penetrance variants. Clinical Immunology 203: 45–52.CrossRefGoogle Scholar
  20. 20.
    Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell. 140: 821–832.CrossRefGoogle Scholar
  21. 21.
    Shao, B.Z., Z.Q. Xu, B.Z. Han, D.F. Su, and C. Liu. 2015. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacology 6: 262.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang, Y., X. Lv, Z. Hu, X. Ye, X. Zheng, Y. Ding, P. Xie, and Q. Liu. 2017. Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death & Disease 8: e2941.CrossRefGoogle Scholar
  23. 23.
    Gaidt, M.M., and V. Hornung. 2018. The NLRP3 inflammasome renders cell death pro-inflammatory. Journal of Molecular Biology 430: 133–141.CrossRefGoogle Scholar
  24. 24.
    Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38: 1142–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Petrilli, V., S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.CrossRefGoogle Scholar
  26. 26.
    Gov, L., C.A. Schneider, T.S. Lima, W. Pandori, and M.B. Lodoen. 2017. NLRP3 and potassium efflux drive rapid IL-1beta release from primary human monocytes during Toxoplasma gondii infection. Journal of Immunology (Baltimore, Md. : 1950) 199: 2855–2864.CrossRefGoogle Scholar
  27. 27.
    Gaidt, M.M., T.S. Ebert, D. Chauhan, T. Schmidt, J.L. Schmid-Burgk, F. Rapino, A.A. Robertson, M.A. Cooper, T. Graf, and V. Hornung. 2016. Human monocytes engage an alternative inflammasome pathway. Immunity. 44: 833–846.CrossRefGoogle Scholar
  28. 28.
    Fry, A.M., L. O'Regan, S.R. Sabir, and R. Bayliss. 2012. Cell cycle regulation by the NEK family of protein kinases. Journal of Cell Science 125: 4423–4433.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    He, Y., M.Y. Zeng, D. Yang, B. Motro, and G. Nunez. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 530: 354–357.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shi, H., Y. Wang, X. Li, X. Zhan, M. Tang, M. Fina, L. Su, D. Pratt, C.H. Bu, S. Hildebrand, S. Lyon, L. Scott, J. Quan, Q. Sun, J. Russell, S. Arnett, P. Jurek, D. Chen, V.V. Kravchenko, J.C. Mathison, E.M. Moresco, N.L. Monson, R.J. Ulevitch, and B. Beutler. 2016. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nature Immunology 17: 250–258.CrossRefGoogle Scholar
  31. 31.
    Green, J.P., S. Yu, F. Martin-Sanchez, P. Pelegrin, G. Lopez-Castejon, C.B. Lawrence, and D. Brough. 2018. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America 115: E9371–E9E80.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Xu, K.Y., C.Y. Wu, S. Tong, P. Xiong, and S.H. Wang. 2018. The selective Nlrp3 inflammasome inhibitor Mcc950 attenuates lung ischemia-reperfusion injury. Biochemical and Biophysical Research Communications 503: 3031–3037.CrossRefGoogle Scholar
  33. 33.
    Masumoto, J., S. Taniguchi, K. Ayukawa, H. Sarvotham, T. Kishino, N. Niikawa, E. Hidaka, T. Katsuyama, T. Higuchi, and J. Sagara. 1999. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. The Journal of Biological Chemistry. 274: 33835–33838.CrossRefGoogle Scholar
  34. 34.
    Gumucio, D.L., A. Diaz, P. Schaner, N. Richards, C. Babcock, M. Schaller, and T. Cesena. 2002. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clinical and Experimental Rheumatology 20: S45–S53.PubMedGoogle Scholar
  35. 35.
    Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187: 133–149.CrossRefGoogle Scholar
  36. 36.
    Dick, M.S., L. Sborgi, S. Ruhl, S. Hiller, and P. Broz. 2016. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nature Communications 7: 11929.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Richards, N., P. Schaner, A. Diaz, J. Stuckey, E. Shelden, A. Wadhwa, and D.L. Gumucio. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. The Journal of Biological Chemistry. 276: 39320–39329.CrossRefGoogle Scholar
  38. 38.
    Verhoef, P.A., S.B. Kertesy, K. Lundberg, J.M. Kahlenberg, and G.R. Dubyak. 2005. Inhibitory effects of chloride on the activation of caspase-1, IL-1 secretion, and cytolysis by the P2X7 receptor. The Journal of Immunology. 175: 7623–7634.CrossRefGoogle Scholar
  39. 39.
    Tang, T., X. Lang, C. Xu, X. Wang, T. Gong, Y. Yang, J. Cui, L. Bai, J. Wang, W. Jiang, and R. Zhou. 2017. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications 8: 202.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Daniels, M.J., J. Rivers-Auty, T. Schilling, N.G. Spencer, W. Watremez, V. Fasolino, S.J. Booth, C.S. White, A.G. Baldwin, S. Freeman, R. Wong, C. Latta, S. Yu, J. Jackson, N. Fischer, V. Koziel, T. Pillot, J. Bagnall, S.M. Allan, P. Paszek, J. Galea, M.K. Harte, C. Eder, C.B. Lawrence, and D. Brough. 2016. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nature Communications 7: 12504.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Laliberte, R.E., D.G. Perregaux, L.R. Hoth, P.J. Rosner, C.K. Jordan, K.M. Peese, J.F. Eggler, M.A. Dombroski, K.F. Geoghegan, and C.A. Gabel. 2003. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. The Journal of Biological Chemistry. 278: 16567–16578.CrossRefGoogle Scholar
  42. 42.
    Domingo-Fernandez, R., R.C. Coll, J. Kearney, S. Breit, and L.A.J. O'Neill. 2017. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1beta transcription and activate the NLRP3 inflammasome. The Journal of Biological Chemistry. 292: 12077–12087.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Argenzio, E., and W.H. Moolenaar. 2016. Emerging biological roles of Cl- intracellular channel proteins. Journal of Cell Science 129: 4165–4174.CrossRefGoogle Scholar
  44. 44.
    He, G., Y. Ma, S.Y. Chou, H. Li, C. Yang, J.Z. Chuang, C.H. Sung, and A. Ding. 2011. Role of CLIC4 in the host innate responses to bacterial lipopolysaccharide. European Journal of Immunology 41: 1221–1230.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Danbin Wu
    • 1
  • Yefei Chen
    • 1
  • Yingxin Sun
    • 1
  • Qing Gao
    • 1
  • Huhu Li
    • 1
  • Zhengfei Yang
    • 1
  • Yangxue Wang
    • 1
  • Xijuan Jiang
    • 1
    Email author
  • Bin Yu
    • 2
    Email author
  1. 1.School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinPeople’s Republic of China
  2. 2.International Exchanges Department & International Education CollegeTianjin University of Traditional Chinese MedicineTianjinPeople’s Republic of China

Personalised recommendations