PNU-282987 Attenuates Intestinal Epithelial Barrier Dysfunction in LPS-Induced Endotoxemia

  • Ying Zhang
  • Feng Zhou
  • Zhili Wang
  • Zhifeng Li
  • Jianguo LiEmail author
Original Article


PNU-282987, the α7 acetylcholine receptor(α7nAchR) agonist, has been repeatedly reported to play a key role in anti-inflammatory action of multiple disease. However, little is known about its effect on LPS-induced intestinal epithelial barrier dysfunction. This study investigated the protective effects and mechanisms of PNU-282987 on intestinal epithelial barrier dysfunction in lipopolysaccharide(LPS)-induced endotoxemic rats. Endotoxemia models were induced by intraperitoneal injection of 10 mg/kg LPS. In the endotoxemic group, results showed increases in ileum mucosal permeability, ultrastructural damage of tight junction and redistribution of zonula occludens-1, apoptosis of intestinal epithelial cells and caspase-3 activation. These changes were significantly improved after PNU-282987 administration(P < 0.05). Pretreatment with α-bungarotoxin before PNU-282987 administration reversed the effects of PNU-282987(P < 0.05). These results indicate that PNU-282987 exerts protective effects on intestinal epithelial barrier dysfunction in LPS-induced endotoxemic rats, and its mechanism may involve the improvement of zonula occludens-1 and inhibition of enterocyte apoptosis in an α7nAchR-dependent manner.


PNU-282987 intestinal permeability zonula occludens-1 tight junction apoptosis 



This work was financially supported by the National Natural Science Foundation of China(NO.81560131).


  1. 1.
    De-Souza, D.A., and L.J. Greene. 2005. Intestinal permeability and systemic infections in critically ill patients: Effect of glutamine. Critical Care Medicine 33: 1125–1135.CrossRefGoogle Scholar
  2. 2.
    Doig, C.J., L.R. Sutherland, J.D. Sandham, G.H. Fick, M. Verhoef, and J.B. Meddings. 1998. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. American Journal of Respiratory and Critical Care Medicine 158: 444–451.CrossRefGoogle Scholar
  3. 3.
    Madara, J.L. 1990. Warner-Lambert/Parke-Davis award lecture. Pathobiology of the intestinal epithelial barrier. The American Journal of Pathology 137: 1273–1281.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Tong, L.C., Y. Wang, Z.B. Wang, W.Y. Liu, S. Sun, L. Li, D.F. Su, and L.C. Zhang. 2016. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Frontiers in Pharmacology 7: 253.CrossRefGoogle Scholar
  5. 5.
    Caloni, F., C. Cortinovis, F. Pizzo, and I. De Angelis. 2012. Transport of aflatoxin M(1) in human intestinal Caco-2/TC7 cells. Frontiers in Pharmacology 3: 111.CrossRefGoogle Scholar
  6. 6.
    Li, Q., Q. Zhang, C. Wang, X. Liu, N. Li, and J. Li. 2009. Disruption of tight junctions during polymicrobial sepsis in vivo. The Journal of Pathology 218: 210–221.CrossRefGoogle Scholar
  7. 7.
    Liu, Q., R. Mittal, C.N. Emami, C. Iversen, H.R. Ford, and N.V. Prasadarao. 2012. Human isolates of Cronobacter sakazakii bind efficiently to intestinal epithelial cells in vitro to induce monolayer permeability and apoptosis. The Journal of Surgical Research 176: 437–447.CrossRefGoogle Scholar
  8. 8.
    Salim, S.Y., and J.D. Soderholm. 2011. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflammatory Bowel Diseases 17: 362–381.CrossRefGoogle Scholar
  9. 9.
    Rosas-Ballina, M., P.S. Olofsson, M. Ochani, S.I. Valdes-Ferrer, Y.A. Levine, C. Reardon, M.W. Tusche, V.A. Pavlov, U. Andersson, S. Chavan, T.W. Mak, and K.J. Tracey. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334: 98–101.CrossRefGoogle Scholar
  10. 10.
    Tracey, K.J. 2009. Reflex control of immunity. Nature Reviews. Immunology 9: 418–428.CrossRefGoogle Scholar
  11. 11.
    Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Camara, L.A. Wensing, V.F. Prado, I.F. Tiberio, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the alpha7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31: 320–332.CrossRefGoogle Scholar
  12. 12.
    Chen, J.K., Z.P. Li, Y.Z. Liu, T. Zhao, X.B. Zhao, M. Ni, G.J. Jiang, and F.M. Shen. 2014. Activation of alpha 7 nicotinic acetylcholine receptor protects mice from radiation-induced intestinal injury and mortality. Radiation Research 181: 666–671.CrossRefGoogle Scholar
  13. 13.
    Dash, P.K., J. Zhao, N. Kobori, J.B. Redell, M.J. Hylin, K.N. Hood, and A.N. Moore. 2016. Activation of alpha 7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. The Journal of Neuroscience 36: 2809–2818.CrossRefGoogle Scholar
  14. 14.
    Chiu, C.J., A.H. McArdle, R. Brown, H.J. Scott, and F.N. Gurd. 1970. Intestinal mucosal lesion in low-flow states. I. a morphological, hemodynamic, and metabolic reappraisal. Archives of Surgery 101: 478–483.CrossRefGoogle Scholar
  15. 15.
    Yasuda, T., Y. Takeyama, T. Ueda, M. Shinzeki, H. Sawa, T. Nakajima, and Y. Kuroda. 2006. Breakdown of intestinal mucosa via accelerated apoptosis increases intestinal permeability in experimental severe acute pancreatitis. The Journal of Surgical Research 135: 18–26.CrossRefGoogle Scholar
  16. 16.
    Li, H.M., Y.Y. Wang, H.D. Wang, W.J. Cao, X.H. Yu, D.X. Lu, R.B. Qi, C.F. Hu, and Y.X. Yan. 2011. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacologica Sinica 32: 1364–1372.CrossRefGoogle Scholar
  17. 17.
    Song, X.M., J.G. Li, Y.L. Wang, Z.F. Hu, Q. Zhou, Z.H. Du, and B.H. Jia. 2008. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock 30: 468–472.CrossRefGoogle Scholar
  18. 18.
    Andrews, N.C., and D.V. Faller. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research 19: 2499.CrossRefGoogle Scholar
  19. 19.
    Ivey, R., M. Desai, K. Green, I. Sinha-Hikim, T.C. Friedman, and A.P. Sinha-Hikim. 2014. Additive effects of nicotine and high-fat diet on hepatocellular apoptosis in mice: Involvement of caspase 2 and inducible nitric oxide synthase-mediated intrinsic pathway signaling. Hormone and Metabolic Research 46: 568–573.CrossRefGoogle Scholar
  20. 20.
    Zanetti, F., M. Giacomello, Y. Donati, S. Carnesecchi, M. Frieden, and C. Barazzone-Argiroffo. 2014. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radical Biology & Medicine 76: 173–184.CrossRefGoogle Scholar
  21. 21.
    Blackwood, B.P., C.Y. Yuan, D.R. Wood, J.D. Nicolas, J.S. Grothaus, and C.J. Hunter. 2017. Probiotic Lactobacillus species strengthen intestinal barrier function and tight junction integrity in experimental necrotizing enterocolitis. Journal of Probiotics and Health 5.Google Scholar
  22. 22.
    Yu, C., G. Jia, Q. Deng, H. Zhao, X. Chen, G. Liu, and K. Wang. 2016. The effects of glucagon-like Peptide-2 on the tight junction and barrier function in IPEC-J2 cells through phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling pathway. Asian-Australasian Journal of Animal Sciences 29: 731–738.CrossRefGoogle Scholar
  23. 23.
    Gu, L., N. Li, J. Gong, Q. Li, W. Zhu, and J. Li. 2011. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. The Journal of Infectious Diseases 203: 1602–1612.CrossRefGoogle Scholar
  24. 24.
    Krzyzaniak, M., C. Peterson, W. Loomis, A.M. Hageny, P. Wolf, L. Reys, J. Putnam, B. Eliceiri, A. Baird, V. Bansal, and R. Coimbra. 2011. Postinjury vagal nerve stimulation protects against intestinal epithelial barrier breakdown. The Journal of Trauma 70: 1168–1175 discussion 1175-1166.CrossRefGoogle Scholar
  25. 25.
    Sukhotnik, I., N. Shehadeh, A.G. Coran, J.G. Mogilner, R. Karry, B. Shamian, B.M. Ure, and R. Shamir. 2008. Oral insulin enhances cell proliferation and decreases enterocyte apoptosis during methotrexate-induced mucositis in the rat. Journal of Pediatric Gastroenterology and Nutrition 47: 115–122.CrossRefGoogle Scholar
  26. 26.
    Sukhotnik, I., M. Agam, R. Shamir, N. Shehadeh, M. Lurie, A.G. Coran, E. Shiloni, and J. Mogilner. 2007. Oral glutamine prevents gut mucosal injury and improves mucosal recovery following lipopolysaccharide endotoxemia in a rat. The Journal of Surgical Research 143: 379–384.CrossRefGoogle Scholar
  27. 27.
    Pavlov, V.A., M. Ochani, L.H. Yang, M. Gallowitsch-Puerta, K. Ochani, X. Lin, J. Levi, W.R. Parrish, M. Rosas-Ballina, C.J. Czura, G.J. Larosa, E.J. Miller, K.J. Tracey, and Y. Al-Abed. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Critical Care Medicine 35: 1139–1144.CrossRefGoogle Scholar
  28. 28.
    Gao, Y., K. Kang, H. Liu, W. Kong, Q. Han, X. Zhang, R. Huang, J. Qu, H. Wang, S. Wang, R. Liu, Y. Liu, and K. Yu. 2017. GTS-21 attenuates LPS-induced renal injury via the cholinergic anti-inflammatory pathway in mice. American Journal of Translational Research 9: 4673–4681.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kong, W., K. Kang, Y. Gao, H. Liu, X. Meng, Y. Cao, S. Yang, W. Liu, J. Zhang, K. Yu, and M. Zhao. 2018. GTS-21 protected against LPS-induced Sepsis myocardial injury in mice through alpha7nAChR. Inflammation 41: 1073–1083.CrossRefGoogle Scholar
  30. 30.
    Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384–388.CrossRefGoogle Scholar
  31. 31.
    Li, M.X., J.F. Liu, J.D. Lu, Y. Zhu, D.W. Kuang, J.B. Xiang, P. Sun, W. Wang, J. Xue, Y. Gu, and C.M. Hao. 2016. Plasmadiafiltration ameliorating gut mucosal barrier dysfunction and improving survival in porcine sepsis models. Intensive Care Medicine Experimental 4: 31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Ying Zhang
    • 1
  • Feng Zhou
    • 2
  • Zhili Wang
    • 1
  • Zhifeng Li
    • 1
  • Jianguo Li
    • 1
    Email author
  1. 1.Department of Critical Care Medicine, Zhongnan HospitalWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Department of Endocrinology, Puren HospitalWuhan University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations