pp 1–10 | Cite as

Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity

  • Shilin Xia
  • Yujia Ni
  • Qi Zhou
  • Han liu
  • Hong Xiang
  • Hua Sui
  • Dong ShangEmail author
Original Article


There is no specific drug to treat severe acute pancreatitis (SAP), which induces substantial medical and social burden. Many studies have reported the beneficial effects of emodin against SAP in vivo and in vitro. However, the underlying mechanism has been unclear. This paper described the design and implementation of anti-inflammatory and antioxidant activity of emodin. Emodin restored the pathological damage of SAP and simultaneously decreased the high levels of serum amylase, lipase, TNF-α, and IL-18 in the peripheral blood of SAP rat. Emodin reversed reactive oxygen species (ROS) in neutrophils derived from SAP rat. The levels of voltage-dependent anion channel 1 (VDAC1), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-18 were examined to analyze the change of inflammasome-related mediators between SAP and emodin treatment. These findings suggest that emodin plays its protective role on SAP against oxidative stress and inflammasome signals.


emodin reactive oxygen species severe acute pancreatitis inflammasome signals 



We wish to acknowledge Xue Sui for the help in the flow cytometry assay and Xiaoxin Sun for the arrangement of the daily work in the laboratory.

Author Contributions

Shilin Xia and Dong Shang participated in the design of this study. Shilin Xia performed the manuscript review. Yujia Ni exerted the main experiment and performed the statistical analysis. Shilin Xia and Han Liu drafted the manuscript. Qi Zhou, Hong Xiang, and Hua Sui provided assistance for the data acquisition and data analysis. All authors read and approved the final manuscript.


This research was supported by the National Natural Science Foundation of China (No. 81873156 and No. 81703871), Key Project Supported by Clinical Ability Construction of Liaoning Province (No. LNCCC-A03-2015), and Doctoral Start-up Foundation of Liaoning Province (No. 20170520408).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Trikudanathan, G., D.R.J. Wolbrink, H.C. van Santvoort, et al. 2019. Current concepts in severe acute and necrotizing pancreatitis: An evidence-based approach. Gastroenterology 156 (1994–2007): e3.Google Scholar
  2. 2.
    Kim, T.Y., S.J. Kim, Y.S. Kim, J.W. Lee, E.J. Park, S.J. Lee, K.J. Lee, and Y.S. Cha. 2019. Delta neutrophil index as an early predictive marker of severe acute pancreatitis in the emergency department. United European Gastroenterology Journal 7: 488–495.CrossRefGoogle Scholar
  3. 3.
    Yang, Z.W., X.X. Meng, and P. Xu. 2015. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. Journal of Cellular and Molecular Medicine 19: 2513–2520.CrossRefGoogle Scholar
  4. 4.
    El-Kenawi, A., and B. Ruffell. 2017. Inflammation, ROS, and mutagenesis. Cancer Cell 32: 727–729.CrossRefGoogle Scholar
  5. 5.
    Aviello, G., and U.G. Knaus. 2017. ROS in gastrointestinal inflammation: Rescue or sabotage? British Journal of Pharmacology 174: 1704–1718.CrossRefGoogle Scholar
  6. 6.
    Chen, Y.K., Y.K. Xu, H. Zhang, J.T. Yin, X. Fan, D.D. Liu, H.Y. Fu, and B. Wan. 2016. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response. Biomedicine & Pharmacotherapy 84: 1001–1007.CrossRefGoogle Scholar
  7. 7.
    Zhu, T., W. Zhang, S.J. Feng, and H.P. Yu. 2016. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARgamma-dependent pathway. International Immunopharmacology 34: 16–24.CrossRefGoogle Scholar
  8. 8.
    Wang, T., X.G. Zhong, Y.H. Li, X. Jia, S.J. Zhang, Y.S. Gao, M. Liu, and R.H. Wu. 2015. Protective effect of emodin against airway inflammation in the ovalbumin-induced mouse model. Chinese Journal of Integrative Medicine 21: 431–437.CrossRefGoogle Scholar
  9. 9.
    Wang, G.J., Y. Wang, Y.S. Teng, et al. 2016. Protective effects of emodin-induced neutrophil apoptosis via the Ca2+-caspase 12 pathway against SIRS in rats with severe acute pancreatitis. BioMed Research International 2016: 1736024.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ma, C., B. Wen, Q. Zhang, P.P. Shao, W. Gu, K. Qu, Y. Shi, and B. Wang. 2019. Emodin induces apoptosis and autophagy of fibroblasts obtained from patient with ankylosing spondylitis. Drug Design, Development and Therapy 13: 601–609.CrossRefGoogle Scholar
  11. 11.
    Zhao, J.Y., J.Q. Wang, L. Wu, F. Zhang, Z.P. Chen, W.D. Li, H. Cai, and X. Liu. 2019. Emodin attenuates cell injury and inflammation in pancreatic acinar AR42J cells. Journal of Asian Natural Products Research 21: 186–195.CrossRefGoogle Scholar
  12. 12.
    J MB. 2018. Special issue on ‘ROS and mitochondria in nervous system function and disease’. FEBS Letters 592: 661–662.CrossRefGoogle Scholar
  13. 13.
    Colombini, M. 2004. VDAC: The channel at the interface between mitochondria and the cytosol. Molecular and Cellular Biochemistry 256-257: 107–115.CrossRefGoogle Scholar
  14. 14.
    Galganska, H., M. Budzinska, M. Wojtkowska, and H. Kmita. 2008. Redox regulation of protein expression in Saccharomyces cerevisiae mitochondria: Possible role of VDAC. Archives of Biochemistry and Biophysics 479: 39–45.CrossRefGoogle Scholar
  15. 15.
    Li, F., M. Xu, M. Wang, L. Wang, H. Wang, H. Zhang, Y. Chen, J. Gong, J(.J). Zhang, I.M. Adcock, K.F. Chung, and X. Zhou. 2018. Roles of mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced lung inflammation and emphysema. Respiratory Research 19: 230.CrossRefGoogle Scholar
  16. 16.
    Xu, X., L. Zhang, X. Ye, Q. Hao, T. Zhang, G. Cui, and M. Yu. 2018. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflammation Research 67: 57–65.CrossRefGoogle Scholar
  17. 17.
    Mullard, A. 2019. NLRP3 inhibitors stoke anti-inflammatory ambitions. Nature Reviews. Drug Discovery 18: 405–407.CrossRefGoogle Scholar
  18. 18.
    Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19: 477–489.CrossRefGoogle Scholar
  19. 19.
    Zhao, X., C. Zhang, M. Hua, et al. 2017. NLRP3 inflammasome activation plays a carcinogenic role through effector cytokine IL-18 in lymphoma. Oncotarget 8: 108571–108583.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Paran, H., A. Mayo, D. Kidron, et al. 2000. Experimental acute necrotising pancreatitis: Evaluation and characterisation of a model of intraparenchymal injection of sodium taurocholate in rats. The European Journal of Surgery 166: 894–898.CrossRefGoogle Scholar
  21. 21.
    Working Group IAPAPAAPG. 2013. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 13: e1–e15.CrossRefGoogle Scholar
  22. 22.
    van Dijk, S.M., N.D.L. Hallensleben, H.C. van Santvoort, P. Fockens, H. van Goor, M.J. Bruno, and M.G. Besselink. 2017. Acute pancreatitis: Recent advances through randomised trials. Gut 66: 2024–2032.CrossRefGoogle Scholar
  23. 23.
    Shi, Q., K.S. Liao, K.L. Zhao, et al. 2015. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-kappaB pathway. Mediators of Inflammation 2015: 685043.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tian, S.L., Y. Yang, X.L. Liu, and Q.B. Xu. 2018. Emodin attenuates bleomycin-induced pulmonary fibrosis via anti-inflammatory and anti-oxidative activities in rats. Medical Science Monitor 24: 1–10.CrossRefGoogle Scholar
  25. 25.
    Liu, J., F. Wu, and C. Chen. 2015. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters 25: 5142–5146.CrossRefGoogle Scholar
  26. 26.
    Xue, J., F. Chen, J. Wang, S. Wu, M. Zheng, H. Zhu, Y. Liu, J. He, and Z. Chen. 2015. Emodin protects against concanavalin A-induced hepatitis in mice through inhibiting activation of the p38 MAPK-NF-kappaB signaling pathway. Cellular Physiology and Biochemistry 35: 1557–1570.CrossRefGoogle Scholar
  27. 27.
    Sun, J., J.W. Luo, W.J. Yao, et al. 2019. Effect of emodin on gut microbiota of rats with acute kidney failure. Zhongguo Zhong Yao Za Zhi 44: 758–764.PubMedGoogle Scholar
  28. 28.
    Shimizu, K., M. Kageyama, H. Ogura, T. Yamada, and T. Shimazu. 2018. Effects of rhubarb on intestinal dysmotility in critically ill patients. Internal Medicine 57: 507–510.CrossRefGoogle Scholar
  29. 29.
    Xiang, H., X. Tao, S. Xia, J. Qu, H. Song, J. Liu, and D. Shang. 2017. Emodin alleviates sodium taurocholate-induced pancreatic acinar cell injury via microRNA-30a-5p-mediated inhibition of high-temperature requirement A/transforming growth factor beta 1 inflammatory signaling. Frontiers in Immunology 8: 1488.CrossRefGoogle Scholar
  30. 30.
    Yang, Y.Z., Y. Xiang, M. Chen, L.N. Xian, and X.Y. Deng. 2016. Clinical significance of dynamic detection for serum levels of MCP-1, TNF-alpha and IL-8 in patients with acute pancreatitis. Asian Pacific Journal of Tropical Medicine 9: 1111–1114.CrossRefGoogle Scholar
  31. 31.
    Vareechon, C., S.E. Zmina, M. Karmakar, et al. 2017. Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell Host & Microbe 21 (611–618): e5.Google Scholar
  32. 32.
    Yang, W., Y. Tao, Y. Wu, X. Zhao, W. Ye, D. Zhao, L. Fu, C. Tian, J. Yang, F. He, and L. Tang. 2019. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nature Communications 10: 1076.CrossRefGoogle Scholar
  33. 33.
    Goyal, S., S.K. Amar, A.K. Srivastav, D. Chopra, M.K. Pal, N. Arjaria, and R.S. Ray. 2019. Corrigendum to “ROS mediated crosstalk between endoplasmic reticulum and mitochondria by Phloxine B under environmental UV irradiation”. Journal of Photochemistry & Photobiology, B: Biology 161 (2016) 284–294. Journal of Photochemistry and Photobiology. B 190: 179–180.CrossRefGoogle Scholar
  34. 34.
    Zhang, X., L. Yu, and H. Xu. 2016. Lysosome calcium in ROS regulation of autophagy. Autophagy 12: 1954–1955.CrossRefGoogle Scholar
  35. 35.
    Abais, J.M., M. Xia, Y. Zhang, K.M. Boini, and P.L. Li. 2015. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & Redox Signaling 22: 1111–1129.CrossRefGoogle Scholar
  36. 36.
    Lawana, V., N. Singh, S. Sarkar, A. Charli, H. Jin, V. Anantharam, A.G. Kanthasamy, and A. Kanthasamy. 2017. Involvement of c-Abl kinase in microglial activation of NLRP3 inflammasome and impairment in autolysosomal system. Journal of Neuroimmune Pharmacology 12: 624–660.CrossRefGoogle Scholar
  37. 37.
    Goncalves, A.C., L.S. Ferreira, F.A. Manente, et al. 2017. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection. Immunology 151: 154–166.CrossRefGoogle Scholar
  38. 38.
    Savage, C.D., G. Lopez-Castejon, A. Denes, et al. 2012. NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Frontiers in Immunology 3: 288.CrossRefGoogle Scholar
  39. 39.
    Tang, Y.S., Y.H. Zhao, Y. Zhong, X.Z. Li, J.X. Pu, Y.C. Luo, and Q.L. Zhou. 2019. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/caspase-1 signaling pathway. Inflammation Research 68: 727–738.CrossRefGoogle Scholar
  40. 40.
    Hong, Y., Y. Liu, D. Yu, M. Wang, and Y. Hou. 2019. The neuroprotection of progesterone against Abeta-induced NLRP3-caspase-1 inflammasome activation via enhancing autophagy in astrocytes. International Immunopharmacology 74: 105669.CrossRefGoogle Scholar
  41. 41.
    Zorman, J., P. Susjan, and I. Hafner-Bratkovic. 2016. Shikonin suppresses NLRP3 and AIM2 inflammasomes by direct inhibition of caspase-1. PLoS One 11: e0159826.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shilin Xia
    • 1
  • Yujia Ni
    • 2
  • Qi Zhou
    • 3
  • Han liu
    • 4
  • Hong Xiang
    • 1
  • Hua Sui
    • 3
  • Dong Shang
    • 3
    • 5
    Email author
  1. 1.Clinical Laboratory of Integrative MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
  2. 2.Department of GeriatricsShaoxing People’s HospitalZhejiangChina
  3. 3.Institute (College) of Integrative MedicineDalian Medical UniversityDalianChina
  4. 4.Department of Oral PathologyDalian Medical UniversityDalianChina
  5. 5.Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina

Personalised recommendations