Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis

  • Paolo CameliEmail author
  • Alfonso Carleo
  • Laura Bergantini
  • Claudia Landi
  • Antje Prasse
  • Elena Bargagli


Idiopathic pulmonary fibrosis is characterised by abnormal reepithelialisation and remodelling consequent to persistent stimuli or injury. The involvement of oxidative stress in alveolar injury, inflammation and fibrosis development has been suggested. Increased concentrations of lipid peroxidation products, oxidised proteins and an altered antioxidant enzyme status with the depletion of glutathione, the most abundant low-molecular-weight antioxidant, have often been reported in epithelial lining fluid of IPF patients. This review describes the sources of free radical generation, ROS-induced signalling pathways and mechanisms of oxidative stress damages in the pathogenesis of idiopathic pulmonary fibrosis.


idiopathic pulmonary fibrosis pathogenesis oxidative stress oxidant/antioxidant balance 



Idiopathic pulmonary fibrosis


High-resolution computed tomography of the chest


Interstitial lung diseases


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cottin, V., F. Capron, P. Grenier, and J.F. Cordier. 2004. Diffuse idiopathic interstitial pneumonias, international multidisciplinary consensus classification by the American Thoracic Society and the European Respiratory Society, principal clinico-pathological entities, and diagnosis. Revue des Maladies Respiratoires 21 (2 Pt 1): 299–318.CrossRefGoogle Scholar
  2. 2.
    Raghu, G., H.R. Collard, J.J. Egan, F.J. Martinez, J. Behr, K.K. Brown, T.V. Colby, J.F. Cordier, K.R. Flaherty, J.A. Lasky, D.A. Lynch, J.H. Ryu, J.J. Swigris, A.U. Wells, J. Ancochea, D. Bouros, C. Carvalho, U. Costabel, M. Ebina, D.M. Hansell, T. Johkoh, D.S. Kim, King te Jr, Y. Kondoh, J. Myers, N.L. Müller, A.G. Nicholson, L. Richeldi, M. Selman, R.F. Dudden, B.S. Griss, S.L. Protzko, H.J. Schünemann, and ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis. 2011. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical Care Medicine 183: 788–824.CrossRefGoogle Scholar
  3. 3.
    Nalysnyk, L., J. Cid-Ruzafa, P. Rotella, and D. Esser. 2012. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. European Respiratory Review 21: 355–361.CrossRefGoogle Scholar
  4. 4.
    Fois, A.G., P. Paliogiannis, S. Sotgia, A.A. Mangoni, E. Zinellu, P. Pirina, C. Carru, and A. Zinellu. 2018. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respiratory Research 19 (1): 51.CrossRefGoogle Scholar
  5. 5.
    Johannson, K.A., J.R. Balmes, and H.R. Collard. 2015. Air pollution exposure: a novel environmental risk factor for interstitial lung disease? Chest 147 (4): 1161–1167.CrossRefGoogle Scholar
  6. 6.
    Raghu, G., B. Rochwerg, Y. Zhang, C.A. Garcia, A. Azuma, J. Behr, J.L. Brozek, H.R. Collard, W. Cunningham, S. Homma, T. Johkoh, F.J. Martinez, J. Myers, S.L. Protzko, L. Richeldi, D. Rind, M. Selman, A. Theodore, A.U. Wells, H. Hoogsteden, H.J. Schünemann, and American Thoracic Society., European Respiratory society., Japanese Respiratory Society., Latin American Thoracic Association. 2015. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 192: e3–e19.CrossRefGoogle Scholar
  7. 7.
    Hilberg, O., U. Simonsen, R. du Bois, and E. Bendstrup. 2012. Pirfenidone: significant treatment effects in idiopathic pulmonary fibrosis. The Clinical Respiratory Journal 6 (3): 131–143.CrossRefGoogle Scholar
  8. 8.
    Wollin, L., I. Maillet, V. Quesniaux, A. Holweg, and B. Ryffel. 2014. Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. The Journal of Pharmacology and Experimental Therapeutics 349 (2): 209–220.CrossRefGoogle Scholar
  9. 9.
    Magi, B., E. Bargagli, L. Bini, and P. Rottoli. 2006. Proteome analysis of bronchoalveolar lavage in lung diseases. Proteomics. 6: 6354–6369.CrossRefGoogle Scholar
  10. 10.
    Rottoli, P., B. Magi, M.G. Perari, S. Liberatori, N. Nikiforakis, E. Bargagli, R. Cianti, L. Bini, and V. Pallini. 2005. Cytokine profile and proteome analysis in BAL of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics. 5: 1423–1430.CrossRefGoogle Scholar
  11. 11.
    Ahmad, S., M.Y. Khan, Z. Rafi, H. Khan, Z. Siddiqui, S. Rehman, U. Shahab, M.S. Khan, M. Saeed, S. Alouffi, and M.S. Khan. 2018. Oxidation, glycation and glycoxidation - the vicious cycle and lung cancer. Seminars in Cancer Biology 49: 29–36.CrossRefGoogle Scholar
  12. 12.
    Gawda, A., G. Majka, B. Nowak, et al. 2017. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Central-European Journal of Immunology 42 (3): 305–312.CrossRefGoogle Scholar
  13. 13.
    Gonzalez-Gonzalez, F.J., N.S. Chandel, M. Jain, and G.R.S. Budinger. 2017. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Translational Research 190: 61–68.CrossRefGoogle Scholar
  14. 14.
    Ferrari, R.S., and C.F. Andrade. 2015. Oxidative stress and lung ischemia-reperfusion injury. Oxidative Medicine and Cellular Longevity 2015: 590987.CrossRefGoogle Scholar
  15. 15.
    Chanda, D., E. Otoupalova, S.R. Smith, T. Volckaert, S.P. De Langhe, and V.J. Thannickal. 2019. Developmental pathways in the pathogenesis of lung fibrosis. Molecular Aspects of Medicine 65: 56–69.CrossRefGoogle Scholar
  16. 16.
    Landi, C., E. Bargagli, A. Carleo, L. Bianchi, A. Gagliardi, A. Prasse, M.G. Perari, R.M. Refini, L. Bini, and P. Rottoli. 2014. A system biology study of BALF from patients affected by idiopathic pulmonary fibrosis (IPF) and healthy controls. Proteomics. Clinical Applications 8 (11–12): 932–950.CrossRefGoogle Scholar
  17. 17.
    Liu, X., and Z. Chen. 2017. The pathophysiological role of mitochondrial oxidative stress in lung diseases. Journal of Translational Medicine 15 (1): 207.CrossRefGoogle Scholar
  18. 18.
    Liguori, I., G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, D. Bonaduce, and P. Abete. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13: 757–772.CrossRefGoogle Scholar
  19. 19.
    Rottoli, P., B. Magi, R. Cianti, E. Bargagli, C. Vagaggini, N. Nikiforakis, V. Pallini, and L. Bini. 2005. Carbonylated proteins in bronchoalveolar lavage of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis and idiopathic pulmonary fibrosis. Proteomics 5 (10): 2612–2618.CrossRefGoogle Scholar
  20. 20.
    Bargagli, E., F. Penza, C. Vagaggini, B. Magi, M.G. Perari, and P. Rottoli. 2007. Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung. 185 (3): 139–144.CrossRefGoogle Scholar
  21. 21.
    Malli, F., F. Bardaka, I. Tsilioni, E. Karetsi, K.I. Gourgoulianis, and Z. Daniil. 2013. 8-isoprostane levels in serum and bronchoalveolar lavage in idiopathic pulmonary fibrosis and sarcoidosis. Food and Chemical Toxicology 61: 160–163.CrossRefGoogle Scholar
  22. 22.
    Bargagli, E., F. Monaci, N. Bianchi, C. Bucci, and P. Rottoli. 2008. Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biological Trace Element Research 124 (3): 225–235.CrossRefGoogle Scholar
  23. 23.
    Bargagli, E., F. Lavorini, M. Pistolesi, E. Rosi, A. Prasse, E. Rota, and L. Voltolini. 2017. Trace metals in fluids lining the respiratory system of patients with idiopathic pulmonary fibrosis and diffuse lung diseases. Journal of Trace Elements in Medicine and Biology 42: 39–44.CrossRefGoogle Scholar
  24. 24.
    Sangiuolo, F., E. Puxeddu, G. Pezzuto, F. Cavalli, G. Longo, A. Comandini, D. di Pierro, M. Pallante, G. Sergiacomi, G. Simonetti, M. Zompatori, A. Orlandi, A. Magrini, M. Amicosante, F. Mariani, M. Losi, D. Fraboni, A. Bisetti, and C. Saltini. 2015. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis. The European Respiratory Journal 45 (2): 483–490.CrossRefGoogle Scholar
  25. 25.
    Lee, J., I. Arisi, E. Puxeddu, L.K. Mramba, M. Amicosante, C.M. Swaisgood, M. Pallante, M.L. Brantly, C.M. Sköld, and C. Saltini. 2018. Bronchoalveolar lavage (BAL) cells in idiopathic pulmonary fibrosis express a complex pro-inflammatory, pro-repair, angiogenic activation pattern, likely associated with macrophage iron accumulation. PLoS One 13 (4): e0194803.CrossRefGoogle Scholar
  26. 26.
    O'Dwyer, D.N., and B.B. Moore. 2019. Iron-ing out the roles of macrophages in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine.Google Scholar
  27. 27.
    Ye, Q., Y. Dalavanga, N. Poulakis, S.U. Sixt, J. Guzman, and U. Costabel. 2008. Decreased expression of haem oxygenase-1 by alveolar macrophages in idiopathic pulmonary fibrosis. The European Respiratory Journal 31 (5): 1030–1036.CrossRefGoogle Scholar
  28. 28.
    Iwata, Y., M. Okamoto, T. Hoshino, Y. Kitasato, Y. Sakazaki, M. Tajiri, K. Matsunaga, K. Azuma, T. Kawayama, T. Kinoshita, H. Imaoka, K. Fujimoto, S. Kato, H. Yano, and H. Aizawa. 2010. Elevated levels of thioredoxin 1 in the lungs and sera of idiopathic pulmonary fibrosis, non-specific interstitial pneumonia and cryptogenic organizing pneumonia. Internal Medicine 49 (22): 2393–2400.CrossRefGoogle Scholar
  29. 29.
    Gorowiec, M.R., L.A. Borthwick, S.M. Parker, J.A. Kirby, G.C. Saretzki, and A.J. Fisher. 2012. Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-ß1-dependent mechanism. Free Radical Biology & Medicine 52 (6): 1024–1032.CrossRefGoogle Scholar
  30. 30.
    Schamberger, A.C., H.B. Schiller, I.E. Fernandez, et al. 2016. Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease. Scientific Reports 6: 29952.CrossRefGoogle Scholar
  31. 31.
    Hecker, L., R. Vittal, T. Jones, R. Jagirdar, T.R. Luckhardt, J.C. Horowitz, S. Pennathur, F.J. Martinez, and V.J. Thannickal. 2009. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nature Medicine 15: 1077–1081.CrossRefGoogle Scholar
  32. 32.
    Watson, W.H., J.D. Ritzenthaler, and J. Roman. 2016. Lung extracellular matrix and redox regulation. Redox Biology 8: 305–315.CrossRefGoogle Scholar
  33. 33.
    Hecker, L., N.J. Logsdon, D. Kurundkar, A. Kurundkar, K. Bernard, T. Hock, E. Meldrum, Y.Y. Sanders, and V.J. Thannickal. 2014. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Science Translational Medicine 6: 231ra47.CrossRefGoogle Scholar
  34. 34.
    Zhou, Y., X. Huang, L. Hecker, D. Kurundkar, A. Kurundkar, H. Liu, T.H. Jin, L. Desai, K. Bernard, and V.J. Thannickal. 2013. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. The Journal of Clinical Investigation 123 (3): 1096–1108.CrossRefGoogle Scholar
  35. 35.
    Pardo, A., S. Cabrera, M. Maldonado, and M. Selman. 2016. Role of matrix metalloproteinases in the pathogenesis of idiopathic pulmonary fibrosis. Respiratory Research 17: 23. Review.CrossRefGoogle Scholar
  36. 36.
    Estany, S., V. Vicens-Zygmunt, R. Llatjós, A. Montes, R. Penín, I. Escobar, A. Xaubet, S. Santos, F. Manresa, J. Dorca, and M. Molina-Molina. 2014. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1. BMC Pulmonary Medicine 14: 120.CrossRefGoogle Scholar
  37. 37.
    Kliment, C.R., and T.D. Oury. 2010. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radical Biology & Medicine 49 (5): 707–717.CrossRefGoogle Scholar
  38. 38.
    Chen, X., C. Shi, H. Cao, L. Chen, J. Hou, Z. Xiang, K. Hu, and X. Han. 2018. The hedgehog and Wnt/ß-catenin system machinery mediate myofibroblast differentiation of LR-MSCs in pulmonary fibrogenesis. Cell Death & Disease 9 (6): 639.CrossRefGoogle Scholar
  39. 39.
    Zeidler, P., A. Hubbs, L. Battelli, and V. Castranova. 2004. Role of inducible nitric oxide synthase-derived nitric oxide in silica-induced pulmonary inflammation and fibrosis. Journal of Toxicology and Environmental Health. Part A 67 (13): 1001–1026.CrossRefGoogle Scholar
  40. 40.
    Ricciardolo, F.L., P.J. Sterk, B. Gaston, and G. Folkerts. 2004. Nitric oxide in health and disease of the respiratory system. Physiological Reviews 84 (3): 731–765.CrossRefGoogle Scholar
  41. 41.
    Romanska, H.M., J.M. Polak, R.A. Coleman, R.S. James, D.W. Harmer, J.C. Allen, and A.E. Bishop. 2002. iNOS gene upregulation is associated with the early proliferative response of human lung fibroblasts to cytokine stimulation. The Journal of Pathology 197 (3): 372–379.CrossRefGoogle Scholar
  42. 42.
    Saleh, D., P.J. Barnes, and A. Giaid. 1997. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 155 (5): 1763–1769.CrossRefGoogle Scholar
  43. 43.
    Hsu, Y.-C., L.-F. Wang, and Y.W. Chien. 2007. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radical Biology & Medicine 42 (5): 599–607.CrossRefGoogle Scholar
  44. 44.
    Pullamsetti, S.S., R. Savai, R. Dumitrascu, B.K. Dahal, J. Wilhelm, M. Konigshoff, D. Zakrzewicz, and Ghofrani. 2011. The role of dimethylarginine dimethylaminohydrolase in idiopathic pulmonary fibrosis. Science Translational Medicine 3: 87ra53.CrossRefGoogle Scholar
  45. 45.
    Cameli, P., E. Bargagli, R.M. Refini, M.G. Pieroni, D. Bennett, and P. Rottoli. 2014. Exhaled nitric oxide in interstitial lung diseases. Respiratory Physiology & Neurobiology 197: 46–52.CrossRefGoogle Scholar
  46. 46.
    Cameli, P., E. Bargagli, and P. Rottoli. 2016. Exhaled nitric oxide is not increased in pulmonary sarcoidosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases 33 (1): 39–40.Google Scholar
  47. 47.
    Cameli, P., E. Bargagli, L. Bergantini, R.M. Refini, M. Pieroni, P. Sestini, and P. Rottoli. 2019. Evaluation of multiple-flows exhaled nitric oxide in idiopathic and non-idiopathic interstitial lung disease. Journal of Breath Research.Google Scholar
  48. 48.
    Walters, D.M., H.Y. Cho, and S.R. Kleeberger. 2008. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & Redox Signaling 10 (2): 321–332.CrossRefGoogle Scholar
  49. 49.
    Liu, Y., F. Lu, L. Kang, Z. Wang, and Y. Wang. 2017. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium. BMC Pulmonary Medicine 17 (1): 63.CrossRefGoogle Scholar
  50. 50.
    Mazur, W., P. Lindholm, K. Vuorinen, et al. 2010. Cell-specific elevation of NRF2 and sulfiredoxin-1 as markers of oxidative stress in the lungs of idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. APMIS 118 (9): 703–712.CrossRefGoogle Scholar
  51. 51.
    Carleo, A., E. Bargagli, C. Landi, D. Bennett, L. Bianchi, A. Gagliardi, C. Carnemolla, M.G. Perari, G. Cillis, A. Armini, L. Bini, and P. Rottoli. 2016. Comparative proteomic analysis of bronchoalveolar lavage of familial and sporadic cases of idiopathic pulmonary fibrosis. Journal of Breath Research 10 (2): 026007.CrossRefGoogle Scholar
  52. 52.
    Chilosi, M., A. Carloni, A. Rossi, and V. Poletti. 2013. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Translational Research 162 (3): 156–173.CrossRefGoogle Scholar
  53. 53.
    Villegas, L., T. Stidham, and E. Nozik-Grayck. 2014. Oxidative stress and therapeutic development in lung diseases. Journal of Pulmonary & Respiratory Medicine 4 (4).Google Scholar
  54. 54.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, F.J. Martinez, J.A. de Andrade, K.J. Anstrom, T.E. King Jr., and G. Raghu. 2014. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. The New England Journal of Medicine 370 (22): 2093–2101. Scholar
  55. 55.
    Oldham, J.M., S.F. Ma, F.J. Martinez, et al. 2015. TOLLIP, MUC5B, and the response to N-Acetylcysteine among individuals with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 192 (12): 1475–1482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Paolo Cameli
    • 1
    Email author
  • Alfonso Carleo
    • 2
  • Laura Bergantini
    • 1
  • Claudia Landi
    • 1
  • Antje Prasse
    • 2
  • Elena Bargagli
    • 1
  1. 1.Department of Medicine, Surgery and Neurosciences, Respiratory Diseases and Lung Transplant UnitUniversity of SienaSienaItaly
  2. 2.Hannover Medical SchoolHannover UniversityHannoverGermany

Personalised recommendations