pp 1–12 | Cite as

Post-Stroke Microglia Induce Sirtuin2 Expression to Suppress the Anti-inflammatory Function of Infiltrating Regulatory T Cells

  • Long Shu
  • Chao-qing Xu
  • Zhao-Yi Yan
  • Yang Yan
  • Shi-Zhu Jiang
  • Ying-Rui WangEmail author


Ischemic stroke is among the leading causes of death and disability across the globe. Post-stroke neuroinflammation contributes to the pathophysiology of ischemic stroke in the acute phase through damaging neurons in the penumbra region. Infiltrating regulatory T cells (Treg cells) provide neuronal protection in ischemic brains. In the current study using a mouse-transient middle cerebral artery occlusion (MCAO) model, we characterized the changes of sirtuin expression in infiltrating Treg cells in the acute phase of ischemia. We found that Sirt2 was remarkably upregulated in infiltrating Treg cells at day 3 post-MCAO. In vitro inhibition of Sirt2 activity enhanced the expression of immunosuppression-associated molecules including forkhead box P3 (Foxp3) in Treg cells. Using a lentiviral system to express exogenous Sirt2 in Treg cells, we found that Sirt2 weakened the anti-inflammatory effect of Treg cells on pro-inflammatory macrophages. Additionally, post-MCAO microglia increased Sirt2 expression in Treg cells in a cell-to-cell contact manner. We further found that microglia remarkably induced hypoxia-inducible factor 1-alpha (HIF-1α) expression in Treg cells, and inhibition of HIF-1α abolished microglia-induced Sirt2 upregulation. Collectively, we discovered a novel mechanism by which the immunoregulatory activity of infiltrating Treg cells is modulated after ischemia.


ischemic stroke regulatory T cells sirtuin hypoxia-inducible factor 1-alpha microglia 


Funding Information

This study was supported by the Natural Science Foundation of Hubei Province (Grant No. WJ2017X020).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10753_2019_1057_MOESM1_ESM.pdf (356 kb)
ESM 1 (PDF 356 kb)


  1. 1.
    Kokaia, Z., 2015. Targeting neuroinflammation for treatment of ischemic stroke. Georgian Medical News 84–87.Google Scholar
  2. 2.
    Kawabori, M., and M.A. Yenari. 2015. Inflammatory responses in brain ischemia. Current Medicinal Chemistry 22: 1258–1277.CrossRefGoogle Scholar
  3. 3.
    Kleinschnitz, C., N. Schwab, P. Kraft, I. Hagedorn, A. Dreykluft, T. Schwarz, M. Austinat, B. Nieswandt, H. Wiendl, and G. Stoll. 2010. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115: 3835–3842.CrossRefGoogle Scholar
  4. 4.
    Iadecola, C., and J. Anrather. 2011. The immunology of stroke: From mechanisms to translation. Nature Medicine 17: 796–808.CrossRefGoogle Scholar
  5. 5.
    Chen, S., H. Wu, D. Klebe, Y. Hong, J. Zhang, and J. Tang. 2013. Regulatory T cell in stroke: A new paradigm for immune regulation. Clinical & Developmental Immunology 2013: 689827.Google Scholar
  6. 6.
    Xia, Y., W. Cai, A.W. Thomson, and X. Hu. 2016. Regulatory T cell therapy for ischemic stroke: How far from clinical translation? Translational Stroke Research 7: 415–419.CrossRefGoogle Scholar
  7. 7.
    Sidorova-Darmos, E., R.G. Wither, N. Shulyakova, C. Fisher, M. Ratnam, M. Aarts, L. Lilge, P.P. Monnier, and J.H. Eubanks. 2014. Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Frontiers in Aging Neuroscience 6: 333.CrossRefGoogle Scholar
  8. 8.
    Zhang, J., S.M. Lee, S. Shannon, B. Gao, W. Chen, A. Chen, R. Divekar, M.W. McBurney, H. Braley-Mullen, H. Zaghouani, and D. Fang. 2009. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. The Journal of Clinical Investigation 119: 3048–3058.CrossRefGoogle Scholar
  9. 9.
    Zou, T., Y. Yang, F. Xia, A. Huang, X. Gao, D. Fang, S. Xiong, and J. Zhang. 2013. Resveratrol inhibits CD4+ T cell activation by enhancing the expression and activity of Sirt1. PLoS One 8: e75139.CrossRefGoogle Scholar
  10. 10.
    Beier, U.H., L. Wang, T.R. Bhatti, Y. Liu, R. Han, G. Ge, and W.W. Hancock. 2011. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Molecular and Cellular Biology 31: 1022–1029.CrossRefGoogle Scholar
  11. 11.
    van Loosdregt, J., D. Brunen, V. Fleskens, C.E. Pals, E.W. Lam, and P.J. Coffer. 2011. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One 6: e19047.CrossRefGoogle Scholar
  12. 12.
    Kwon, H.S., H.W. Lim, J. Wu, M. Schnolzer, E. Verdin, and M. Ott. 2012. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. Journal of Immunology 188: 2712–2721.CrossRefGoogle Scholar
  13. 13.
    Chiang, T., Messing, R. O. and Chou, W. H.. 2011. Mouse model of middle cerebral artery occlusion. Journal of Visualized Experiments.Google Scholar
  14. 14.
    Qin, J., Y. Liu, Y. Lu, M. Liu, M. Li, J. Li, and L. Wu. 2017. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Scientific Reports 7: 10592.CrossRefGoogle Scholar
  15. 15.
    Gomes, P., T. Fleming Outeiro, and C. Cavadas. 2015. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends in Pharmacological Sciences 36: 756–768.CrossRefGoogle Scholar
  16. 16.
    Long, M., S.G. Park, I. Strickland, M.S. Hayden, and S. Ghosh. 2009. Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31: 921–931.CrossRefGoogle Scholar
  17. 17.
    Ramakrishnan, G., G. Davaakhuu, L. Kaplun, W.C. Chung, A. Rana, A. Atfi, L. Miele, and G. Tzivion. 2014. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. The Journal of Biological Chemistry 289: 6054–6066.CrossRefGoogle Scholar
  18. 18.
    Kasper, I.R., S.A. Apostolidis, A. Sharabi, and G.C. Tsokos. 2016. Empowering regulatory T cells in autoimmunity. Trends in Molecular Medicine 22: 784–797.CrossRefGoogle Scholar
  19. 19.
    Daitoku, H., J. Sakamaki, and A. Fukamizu. 2011. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochimica et Biophysica Acta 1813: 1954–1960.CrossRefGoogle Scholar
  20. 20.
    Wang, F., M. Nguyen, F.X. Qin, and Q. Tong. 2007. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6: 505–514.CrossRefGoogle Scholar
  21. 21.
    Ohkura, N., and S. Sakaguchi. 2010. Foxo1 and Foxo3 help Foxp3. Immunity 33: 835–837.CrossRefGoogle Scholar
  22. 22.
    Schetters, S.T.T., D. Gomez-Nicola, J.J. Garcia-Vallejo, and Y. Van Kooyk. 2017. Neuroinflammation: Microglia and T cells get ready to tango. Frontiers in Immunology 8: 1905.CrossRefGoogle Scholar
  23. 23.
    Ebner, F., C. Brandt, P. Thiele, D. Richter, U. Schliesser, V. Siffrin, J. Schueler, T. Stubbe, A. Ellinghaus, C. Meisel, B. Sawitzki, and R. Nitsch. 2013. Microglial activation milieu controls regulatory T cell responses. Journal of Immunology 191: 5594–5602.CrossRefGoogle Scholar
  24. 24.
    Cherry, J.D., J.A. Olschowka, and M.K. O’Banion. 2014. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. Journal of Neuroinflammation 11: 98.CrossRefGoogle Scholar
  25. 25.
    Strieter, R.M. 2005. Masters of angiogenesis. Nature Medicine 11: 925–927.CrossRefGoogle Scholar
  26. 26.
    Zhang, X., G. Azhar, and J.Y. Wei. 2017. SIRT2 gene has a classic SRE element, is a downstream target of serum response factor and is likely activated during serum stimulation. PLoS One 12: e0190011.CrossRefGoogle Scholar
  27. 27.
    Liesz, A., E. Suri-Payer, C. Veltkamp, H. Doerr, C. Sommer, S. Rivest, T. Giese, and R. Veltkamp. 2009. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nature Medicine 15: 192–199.CrossRefGoogle Scholar
  28. 28.
    Liesz, A., W. Zhou, S.Y. Na, G.J. Hammerling, N. Garbi, S. Karcher, E. Mracsko, J. Backs, S. Rivest, and R. Veltkamp. 2013. Boosting regulatory T cells limits neuroinflammation in permanent cortical stroke. The Journal of Neuroscience 33: 17350–17362.CrossRefGoogle Scholar
  29. 29.
    Xie, L., F. Sun, J. Wang, X. Mao, L. Xie, S.H. Yang, D.M. Su, J.W. Simpkins, D.A. Greenberg, and K. Jin. 2014. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. Journal of Immunology 192: 6009–6019.CrossRefGoogle Scholar
  30. 30.
    Xie, L., G.R. Choudhury, A. Winters, S.H. Yang, and K. Jin. 2015. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. European Journal of Immunology 45: 180–191.CrossRefGoogle Scholar
  31. 31.
    Stubbe, T., F. Ebner, D. Richter, O. Engel, J. Klehmet, G. Royl, A. Meisel, R. Nitsch, C. Meisel, and C. Brandt. 2013. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. Journal of Cerebral Blood Flow and Metabolism 33: 37–47.CrossRefGoogle Scholar
  32. 32.
    Li, P., Y. Gan, B.L. Sun, F. Zhang, B. Lu, Y. Gao, W. Liang, A.W. Thomson, J. Chen, and X. Hu. 2013. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Annals of Neurology 74: 458–471.CrossRefGoogle Scholar
  33. 33.
    Zhang, H., Y. Xia, Q. Ye, F. Yu, W. Zhu, P. Li, Z. Wei, Y. Yang, Y. Shi, A.W. Thomson, J. Chen, and X. Hu. 2018. In vivo expansion of regulatory T cells with IL-2/IL-2 antibody complex protects against transient ischemic stroke. The Journal of Neuroscience 38: 10168–10179.CrossRefGoogle Scholar
  34. 34.
    Brea, D., J. Agulla, M. Rodriguez-Yanez, D. Barral, P. Ramos-Cabrer, F. Campos, A. Almeida, A. Davalos, and J. Castillo. 2014. Regulatory T cells modulate inflammation and reduce infarct volume in experimental brain ischaemia. Journal of Cellular and Molecular Medicine 18: 1571–1579.CrossRefGoogle Scholar
  35. 35.
    Ren, X., K. Akiyoshi, A.A. Vandenbark, P.D. Hurn, and H. Offner. 2011. CD4+FoxP3+ regulatory T-cells in cerebral ischemic stroke. Metabolic Brain Disease 26: 87–90.CrossRefGoogle Scholar
  36. 36.
    Kleinschnitz, C., P. Kraft, A. Dreykluft, I. Hagedorn, K. Gobel, M.K. Schuhmann, F. Langhauser, X. Helluy, T. Schwarz, S. Bittner, C.T. Mayer, M. Brede, C. Varallyay, M. Pham, M. Bendszus, P. Jakob, T. Magnus, S.G. Meuth, Y. Iwakura, A. Zernecke, T. Sparwasser, B. Nieswandt, G. Stoll, and H. Wiendl. 2013. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121: 679–691.CrossRefGoogle Scholar
  37. 37.
    Schuhmann, M.K., P. Kraft, G. Stoll, K. Lorenz, S.G. Meuth, H. Wiendl, B. Nieswandt, T. Sparwasser, N. Beyersdorf, T. Kerkau, and C. Kleinschnitz. 2015. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. Journal of Cerebral Blood Flow and Metabolism 35: 6–10.CrossRefGoogle Scholar
  38. 38.
    Almolda, B., B. Gonzalez, and B. Castellano. 2011. Antigen presentation in EAE: Role of microglia, macrophages and dendritic cells. Frontiers of Biology (Landmark Ed) 16: 1157–1171.CrossRefGoogle Scholar
  39. 39.
    Wlodarczyk, A., M. Lobner, O. Cedile, and T. Owens. 2014. Comparison of microglia and infiltrating CD11c(+) cells as antigen presenting cells for T cell proliferation and cytokine response. Journal of Neuroinflammation 11: 57.CrossRefGoogle Scholar
  40. 40.
    Liesz, A., S. Karcher, and R. Veltkamp. 2013. Spectratype analysis of clonal T cell expansion in murine experimental stroke. Journal of Neuroimmunology 257: 46–52.CrossRefGoogle Scholar
  41. 41.
    Sarikhani, M., S. Maity, S. Mishra, A. Jain, A.K. Tamta, V. Ravi, M.S. Kondapalli, P.A. Desingu, D. Khan, S. Kumar, S. Rao, M. Inbaraj, A.S. Pandit, and N.R. Sundaresan. 2018. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. The Journal of Biological Chemistry 293: 5281–5294.CrossRefGoogle Scholar
  42. 42.
    Macian, F. 2005. NFAT proteins: Key regulators of T-cell development and function. Nature Reviews. Immunology 5: 472–484.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Long Shu
    • 1
  • Chao-qing Xu
    • 1
  • Zhao-Yi Yan
    • 1
  • Yang Yan
    • 1
  • Shi-Zhu Jiang
    • 2
  • Ying-Rui Wang
    • 1
    Email author
  1. 1.Department of NeurologyAffiliated Renhe Hospital of China Three Gorges UniversityYichang CityChina
  2. 2.Department of Digestive DiseasesAffiliated Renhe Hospital of China Three Gorges UniversityYichang CityChina

Personalised recommendations