Advertisement

Inflammation

pp 1–10 | Cite as

Lipopolysaccharide-Induced Hemolysis Is Abolished by Inhibition of Thrombin Generation but Not Inhibition of Platelet Aggregation

  • Stephan Brauckmann
  • Katharina Effenberger-Neidnicht
  • Michael Nagel
  • Christian Mayer
  • Jürgen Peters
  • Matthias HartmannEmail author
ORIGINAL ARTICLE

Abstract

In human sepsis, hemolysis is an independent predictor of mortality, but the mechanisms evoking hemolysis have not been fully elucidated. Therefore, we tested the hypotheses that (1) lipopolysaccharide (LPS)-induced hemolysis is dependent on thrombin generation or platelet aggregation and (2) red cell membranes are weakened by LPS. Anesthetized male Wistar rats were subjected to LPS or vehicle for 240 min. The effects of hemostasis inhibition on LPS-induced hemolysis were investigated by use of the thrombin inhibitor argatroban or the platelet function inhibitor eptifibatide. Free hemoglobin concentration, red cell membrane stiffness and red cell morphological changes were determined by spectrophotometry, atomic force microscopy, and light microscopy. Efficacy of argatroban and eptifibatide was assessed by rotational thrombelastometry and impedance aggregometry, respectively. LPS markedly increased free hemoglobin concentration (20.8 μmol/l ± 3.6 vs. 3.5 ± 0.3, n = 6, p < 0.0001) and schistocytes, reduced red cell membrane stiffness, and induced disseminated intravascular coagulation. Inhibition of thrombin formation with argatroban abolished the increase in free hemoglobin concentration, schistocyte formation, and disseminated intravascular coagulation in LPS-treated animals. Eptifibatide had no inhibitory effect. The LPS evoked decrease of red cell stiffness that was not affected by argatroban or eptifibatide. LPS causes hemolysis, schistocyte formation, and red cell membrane weakening in rats. The thrombin inhibitor argatroban but not the platelet inhibitor eptifibatide abolished hemolysis and schistocyte formation. Thus, LPS-induced hemolysis depends on disseminated intravascular coagulation, possibly enhanced by red cell membrane weakening. Clinical studies are necessary to investigate whether thrombin antagonists can decrease hemolysis and mortality in sepsis.

KEY WORDS

lipopolysaccharide hemolysis hemostasis red cell membrane stiffness 

Abbreviations

LPS

Lipopolysaccharide

Notes

Acknowledgments

We would like to thank the laboratory staff of the Department of Physiological Chemistry for the work.

Authors’ Contributions

SB and KR-F participated in the animal experiments and data analysis. MN and CM performed the atomic force experiments. SB and MH wrote the manuscript. JP corrected the manuscript. All authors read and approved the manuscript.

Funding

Dr. Brauckmann received the IFORES grant from the Medical Faculty, University of Duisburg-Essen.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Ethical Approval

The experimental protocol had been approved based on the local animal protection act with the permit number Az.: 84-02.04.2013.A015.

References

  1. 1.
    Adamzik, M., T. Hamburger, F. Petrat, J. Peters, H. de Groot, and M. Hartmann. 2012. Free hemoglobin concentration in severe sepsis: methods of measurement and prediction of outcome. Critical Care 16 (4): R125.CrossRefGoogle Scholar
  2. 2.
    Larsen, R., R. Gozzelino, V. Jeney, L. Tokaji, F.A. Bozza, A.M. Japiassú, D. Bonaparte, M.M. Cavalcante, A. Chora, A. Ferreira, I. Marguti, S. Cardoso, N. Sepúlveda, A. Smith, and M.P. Soares. 2010. A central role for free heme in the pathogenesis of severe sepsis. Science Translational Medicine 2 (51): 51ra71.CrossRefGoogle Scholar
  3. 3.
    Rother, R.P., L. Bell, P. Hillmen, and M.T. Gladwin. 2005. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 293 (13): 1653–1662.CrossRefGoogle Scholar
  4. 4.
    Levi, M., M. Schultz, and T. van der Poll. 2010. Disseminated intravascular coagulation in infectious disease. Seminars in Thrombosis and Hemostasis 36 (4): 367–377.CrossRefGoogle Scholar
  5. 5.
    Bull, B.S., and I.N. Kuhn. 1970. The production of schistocytes by fibrin strands (a scanning electron microscope study). Blood 35 (1): 104–111.Google Scholar
  6. 6.
    Heyes, H., W. Köhle, and B. Slijepcevic. 1976. The appearance of schistocytes in the peripheral blood in correlation to the degree of disseminated intravascular coagulation. An experimental study in rats. Haemostasis 5 (2): 66–73.Google Scholar
  7. 7.
    Brauckmann, S., K. Effenberger-Neidnicht, H. de Groot, M. Nagel, C. Mayer, J. Peters, and M. Hartmann. 2016. Lipopolysaccharide-induced hemolysis: evidence for direct membrane interactions. Scientific Reports 6: 35508.CrossRefGoogle Scholar
  8. 8.
    Nagel, M., S. Brauckmann, F. Moegle-Hofacker, K. Effenberger-Neidnicht, M. Hartmann, H. de Groot, and C. Mayer. 2015. Impact of bacterial endotoxin on the structure of DMPC membranes. Biochimica et Biophysica Acta 1848 (10 PT A): 2271–2276.CrossRefGoogle Scholar
  9. 9.
    Soret, J.-L. 1883. Analyse spectrale: Sur le spectre d’absorption du sang dans la partie violette et ultra-violette. Comptes Rendus 97: 1269–1270.Google Scholar
  10. 10.
    Zini, G., G. d’Onofrio, C. Briggs, W. Erber, J.M. Jou, S.H. Lee, S. McFadden, J.L. Vives-Corrons, N. Yutaka, J.F. Lesesve, and International Council for Standardization in Haematology (ICSH). 2012. ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes. International Journal of Laboratory Hematology 34 (2): 107–116.CrossRefGoogle Scholar
  11. 11.
    Palmer, L., C. Briggs, S. McFadden, G. Zini, J. Burthem, G. Rozenberg, M. Proytcheva, and S.J. Machin. 2015. ICSH recommendations for the standardization of nomenclature and grading of peripheral blood cell morphological features. International Journal of Laboratory Hematology 37 (3): 287–303.CrossRefGoogle Scholar
  12. 12.
    Janz, D.R., J.A. Bastarache, J.F. Peterson, G. Sills, N. Wickersham, A.K. May, L.J. Roberts 2nd, and L.B. Ware. 2013. Association between cell-free hemoglobin, acetaminophen, and mortality in patients with sepsis: an observational study. Critical Care Medicine 41 (3): 784–790.CrossRefGoogle Scholar
  13. 13.
    Bloom, O., H. Wang, S. Ivanova, J.M. Vishnubhakat, M. Ombrellino, and K.J. Tracey. 1998. Hypophysectomy, high tumor necrosis factor levels, and hemoglobinemia in lethal endotoxemic shock. Shock 10 (6): 395–400.CrossRefGoogle Scholar
  14. 14.
    Su, D., R.I. Roth, and J. Levin. 1999. Hemoglobin infusion augments the tumor necrosis factor response to bacterial endotoxin (lipopolysaccharide) in mice. Critical Care Medicine 27 (4): 771–778.CrossRefGoogle Scholar
  15. 15.
    Weinberg, J.A., S.R. Barnum, and R.P. Patel. 2011. Red blood cell age and potentiation of transfusion-related pathology in trauma patients. Transfusion 51 (4): 867–873.CrossRefGoogle Scholar
  16. 16.
    Belcher, J.D., J.D. Beckman, G. Balla, J. Balla, and G. Vercellotti. 2010. Heme degradation and vascular injury. Antioxidants & Redox Signaling 12 (2): 233–248.CrossRefGoogle Scholar
  17. 17.
    Pishchany, G., A.L. McCoy, V.J. Torres, J.C. Krause, J.E. Crowe Jr., M.E. Fabry, and E.P. Skaar. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host & Microbe 8 (6): 544–550.CrossRefGoogle Scholar
  18. 18.
    Tullius, M.V., C.A. Harmston, C.P. Owens, N. Chim, R.P. Morse, L.M. McMath, A. Iniguez, J.M. Kimmey, M.R. Sawaya, J.P. Whitelegge, M.A. Horwitz, and C.W. Goulding. 2011. Discovery and characterization of a unique mycobacterial heme acquisition system. Proceedings of the National Academy of Sciences of the United States of America 108 (12): 5051–5056.CrossRefGoogle Scholar
  19. 19.
    Bullen, J.J., H.J. Rogers, P.B. Spalding, and C.G. Ward. 2005. Iron and infection: the heart of the matter. FEMS Immunology and Medical Microbiology 43 (3): 325–330.CrossRefGoogle Scholar
  20. 20.
    Litwin, C.M., and S.B. Calderwood. 1993. Role of iron in regulation of virulence genes. Clinical Microbiology Reviews 6 (2): 137–149.CrossRefGoogle Scholar
  21. 21.
    Reid, V.L., and N.R. Webster. 2012. Role of microparticles in sepsis. British Journal of Anaesthesia 109 (4): 503–513.CrossRefGoogle Scholar
  22. 22.
    Adamzik, M., K. Görlinger, J. Peters, and M. Hartmann. 2012. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Critical Care 16 (5): R204.CrossRefGoogle Scholar
  23. 23.
    Adamzik, M., T. Langemeier, U.H. Frey, K. Görlinger, F. Saner, H. Eggebrecht, J. Peters, and M. Hartmann. 2011. Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock 35 (4): 339–342.CrossRefGoogle Scholar
  24. 24.
    Schaer, D.J., P.W. Buehler, A.I. Alayash, J.D. Belcher, and G.M. Vercellotti. 2013. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121 (8): 1276–1284.CrossRefGoogle Scholar
  25. 25.
    Tsen, A., L.A. Kirschenbaum, C. LaRow, R. Khan, S. Kurtz, S. Bansal, and M.E. Astiz. 2009. The effect of anticoagulants and the role of thrombin on neutrophil-endothelial cell interactions in septic shock. Shock 31 (2): 120–124.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Anäesthesiologie und IntensivmedizinUniversitätsklinikum Essen, Universität Duisburg-EssenEssenGermany
  2. 2.Institut für Physiologische ChemieUniversitätsklinikum Essen, Universität Duisburg-EssenEssenGermany
  3. 3.Institut für Physikalische Chemie, CENIDEUniversität Duisburg-EssenEssenGermany

Personalised recommendations