Advertisement

Inflammation

pp 1–16 | Cite as

Co-Nanoencapsulation of Vitamin D3 and Curcumin Regulates Inflammation and Purine Metabolism in a Model of Arthritis

  • Jean Lucas G. da Silva
  • Daniela F. Passos
  • Viviane M. Bernardes
  • Fernanda L. Cabral
  • Paulo G. Schimites
  • Alessandra G. Manzoni
  • Edilene Gadelha de Oliveira
  • Cristiane de Bona da Silva
  • Ruy Carlos Ruver Beck
  • Matheus H. Jantsch
  • Roberto M. Maciel
  • Daniela B. R. LealEmail author
ORIGINAL ARTICLE
  • 48 Downloads

Abstract

We analyzed the effects of a nanoencapsulated association of curcumin and vitamin D3 on purine metabolism enzymes in neutrophils, lymphocytes, and platelets in a model of adjuvant-induced arthritis (AIA) in rats. Following AIA induction, the animals were treated for 15 days with free and nanoencapsulated curcumin (4 mg/kg), nanocapsules of vitamin D3 (VD3) (15.84 IU/day), a nanoencapsulated combination of curcumin and VD3, vehicle, or blank nanocapsules. The animals were euthanized, and blood was collected to evaluate the activities of E-NTPDase, adenosine deaminase (ADA), and myeloperoxidase (MPO), as well as reactive oxygen species (ROS) levels and biochemical parameters. Also, the liver and kidney were collected for histological analysis. The changes in the activities of purinergic enzymes indicated that inflammation was significantly reverted by vitamin D3 and curcumin co-nanoencapsulation treatments in the arthritic rats. The reduction of inflammation was confirmed by the reduction in the signs and symptoms of AIA, as well as in MPO activity by all formulations. The treatments with nanocapsules reverted histological alterations in the kidney. Serum parameters were not altered by the induction or treatments. Our results suggest that co-nanoencapsulation of vitamin D3 and curcumin is an efficient alternative adjuvant treatment for rheumatoid arthritis as it reverts the changes in the purine metabolism and reduces arthritis-associated inflammation.

KEY WORDS

arthritis purinergic system inflammation vitamin D3 curcumin 

Notes

Acknowledgments

The authors would like to thank Professor Volnei Teixeira at the Unijuí for his support in the interpretation of histology.

Funding Information

This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)—Financial Code 001 (PROEX number: 88882.182182/2018-01).

Compliance with Ethical Standards

The experimental protocol was approved by the Ethics Committee on the Use of Animal at the Federal University of Santa Maria (8937281117).

Supplementary material

10753_2019_1021_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 21 kb)

References

  1. 1.
    Scott, David L., F. Wolfe, and T.W. Huizinga. 2010. Rheumatoid arthritis. Lancet 376: 1094–1108.CrossRefGoogle Scholar
  2. 2.
    Praveen, Dixit K., and Mittal Suchita. 2013. Herbal sources of anti-arthritic potential: a comprehensive review. International Journal of Pharmaceutical and Biomedical Research 4: 88–92.Google Scholar
  3. 3.
    Malmström, Vivianne, Anca I. Catrina, and Lars Klareskog. 2017. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nature Reviews Immunology 17. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved: 60.CrossRefGoogle Scholar
  4. 4.
    LaBranche, Timothy P., Michael I. Jesson, Zaher A. Radi, Chad E. Storer, Julia A. Guzova, Sheri L. Bonar, Janice M. Thompson, Fernando A. Happa, Zachary S. Stewart, and Yutian Zhan. 2012. JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. Arthritis and Rheumatism 64. Wiley Online Library: 3531–3542.CrossRefGoogle Scholar
  5. 5.
    Smolen, Josef S., Daniel Aletaha, and Iain B. McInnes. 2016. Rheumatoid arthritis. The Lancet 388. Elsevier Ltd: 2023–2038.  https://doi.org/10.1016/S0140-6736(16)30173-8.CrossRefGoogle Scholar
  6. 6.
    Burnstock, Geoffrey, and Jean-marie Boeynaems. 2014. Purinergic signalling and immune cells. Purinergic Signal: 529–564.  https://doi.org/10.1007/s11302-014-9427-2.
  7. 7.
    Sattar, Naveed, David W. McCarey, Hilary Capell, and Iain B. McInnes. 2003. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108: 2957 LP–2952963.CrossRefGoogle Scholar
  8. 8.
    Marco, E. Bianchi. 2006. DAMPs, PAMPs and alarmins: all we need to know about danger. Journal of Leukocyte Biology 81. Wiley-Blackwell: 1–5.  https://doi.org/10.1189/jlb.0306164.Google Scholar
  9. 9.
    Di, Virgilio, Paola Chiozzi Francesco, Davide Ferrari, Simonetta Falzoni, Juana M. Sanz, Anna Morelli, Maurizia Torboli, Giorgio Bolognesi, and O. Roberto Baricordi. 2001. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97. Am Soc Hematology: 587–600.CrossRefGoogle Scholar
  10. 10.
    Padovan, Melissa, Fabrizio Vincenzi, Marcello Govoni, Alessandra Bortoluzzi, Pier Andrea Borea, and Katia Varani. 2013. Adenosine and adenosine receptors in rheumatoid arthritis. International Journal of Clinical Rheumatology 8. Future Medicine Ltd: 13.CrossRefGoogle Scholar
  11. 11.
    Yegutkin, Gennady G. 2008. Nucleotide- and nucleoside-converting ectoenzymes : Important modulators of purinergic signalling cascade. Biochimica et Biophysica ACTA (BBA)-Molecular Cell 1783: 673–694.  https://doi.org/10.1016/j.bbamcr.2008.01.024.CrossRefGoogle Scholar
  12. 12.
    Friedman, Benjamin, and Bruce Cronstein. 2018. Methotrexate Mechanism in Treatment of Rheumatoid Arthritis. Joint Bone Spine 86. Elsevier: 301-307. Google Scholar
  13. 13.
    Lampropoulos, C.E., P. Orfanos, V.K. Bournia, T. Karatsourakis, C. Mavragani, D. Pikazis, M.N. Manoussakis, A.G. Tzioufas, H.M. Moutsopoulos, and P.G. Vlachoyiannopoulos. 2015. Adverse events and infections in patients with rheumatoid arthritis treated with conventional drugs or biologic agents: a real world study. Clinical and Experimental Rheumatology 33: 216–224.Google Scholar
  14. 14.
    Amalraj, Augustine, Karthik Varma, Joby Jacob, Chandradhara Divya, Ajaikumar B. Kunnumakkara, Sidney J. Stohs, and Sreeraj Gopi. 2017. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: a randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study. Journal of Medicinal Food 20. Mary Ann Liebert, Inc: 1022–1030.CrossRefGoogle Scholar
  15. 15.
    Neve, Anna, Addolorata Corrado, and Francesco Paolo Cantatore. 2014. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clinical and Experimental Medicine 14. Springer: 275–283.CrossRefGoogle Scholar
  16. 16.
    Song, Gwan Gyu, Sang-Cheol Bae, and Young Ho Lee. 2012. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clinical Rheumatology 31: 1733–1739.  https://doi.org/10.1007/s10067-012-2080-7.CrossRefGoogle Scholar
  17. 17.
    Wang, Jing, Tingting Wei, Jin Gao, He He, Xiayun Chang, and Tianhua Yan. 2015. Effects of naringenin on inflammation in complete Freund’s adjuvant-induced arthritis by regulating Bax/Bcl-2 balance. Inflammation 38. Springer: 245–251.CrossRefGoogle Scholar
  18. 18.
    Kerr, Gail S., Iraj Sabahi, John S. Richards, Liron Caplan, Grant W. Cannon, Andreas Reimold, Geoffrey M. Thiele, Dannette Johnson, and Ted R. Mikuls. 2011. Prevalence of vitamin D insufficiency/deficiency in rheumatoid arthritis and associations with disease severity and activity. The Journal of Rheumatology 38. The Journal of Rheumatology: 53–59.CrossRefGoogle Scholar
  19. 19.
    Rao, Jaya K., Kimberly Mihaliak, Kurt Kroenke, John Bradley, William M. Tierney, and Morris Weinberger. 1999. Use of complementary therapies for arthritis among patients of rheumatologists. Annals of Internal Medicine 131. Am Coll Physicians: 409–416.CrossRefGoogle Scholar
  20. 20.
    Park, Cheol, Dong-Oh Moon, Il-Whan Choi, Byung Tae Choi, Taek-Jeong Nam, Chung-Ho Rhu, Taeg Kyu Kwon, Won Ho Lee, Gi-Young Kim, and Yung Hyun Choi. 2007. Curcumin induces apoptosis and inhibits prostaglandin E2 production in synovial fibroblasts of patients with rheumatoid arthritis. International Journal of Molecular Medicine 20. Spandidos Publications: 365–372.Google Scholar
  21. 21.
    Weisberg, Stuart P., Rudolph Leibel, and Drew V. Tortoriello. 2008. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 149. Oxford University Press: 3549–3558.CrossRefGoogle Scholar
  22. 22.
    Xie, Lin, Xiao-Kang Li, Naoko Funeshima-Fuji, Hiromitsu Kimura, Yoh Matsumoto, Yoshitaka Isaka, and Shiro Takahara. 2009. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. International Immunopharmacology 9. Elsevier: 575–581.CrossRefGoogle Scholar
  23. 23.
    Liu, Wenjie, Xiao Dong Chen, Zeneng Cheng, and Cordelia Selomulya. 2016. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering 169. Elsevier: 189–195.CrossRefGoogle Scholar
  24. 24.
    Wikene, Kristine Opsvik, Ellen Bruzell, and Hanne Hjorth Tønnesen. 2015. Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents. European. Journal of Pharmaceutical Sciences 80. Elsevier: 26–32.Google Scholar
  25. 25.
    Bragazzi, Nicola L., Abdulla Watad, Shana G. Neumann, Michael Simon, Stav B. Brown, Arsalan Abu Much, Adam Harari, Shmuel Tiosano, Howard Amital, and Yehuda Shoenfeld. 2017. Vitamin D and rheumatoid arthritis: an ongoing mystery. Current Opinion in Rheumatology 29. Wolters Kluwer: 378–388.CrossRefGoogle Scholar
  26. 26.
    Wimalawansa, Sunil J. 2018. Non-musculoskeletal benefits of vitamin D. The Journal of Steroid Biochemistry and Molecular Biology 175. Elsevier: 60–81.CrossRefGoogle Scholar
  27. 27.
    Merlino, Linda A., Jeffrey Curtis, Ted R. Mikuls, James R. Cerhan, Lindsey A. Criswell, and Kenneth G. Saag. 2004. Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis & Rheumatology 50. Wiley Online Library: 72–77.CrossRefGoogle Scholar
  28. 28.
    Naksuriya, Ornchuma, Siriporn Okonogi, Raymond M. Schiffelers, and Wim E. Hennink. 2014. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35. Elsevier: 3365–3383.CrossRefGoogle Scholar
  29. 29.
    Dolati, Sanam, Sanam Sadreddini, Davoud Rostamzadeh, Majid Ahmadi, Farhad Jadidi-Niaragh, and Mehdi Yousefi. 2016. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomedicine & Pharmacotherapy 80. Elsevier: 30–41.CrossRefGoogle Scholar
  30. 30.
    Silveira, da, Karine Lanes, Leonardo Lanes da Silveira, Maria Luiza Prates Thorstenberg, Fernanda Licker Cabral, Livia Gelain Castilhos, João Felipe Peres Rezer, Diego Fontana de Andrade, et al. 2016. Free and nanoencapsulated vitamin D3: effects on E-NTPDase and E-ADA activities in an animal model with induced arthritis. Cell Biochemistry and Function 34: 262–273.  https://doi.org/10.1002/cbf.3188.CrossRefGoogle Scholar
  31. 31.
    Jaques, Jeandre Augusto dos Santos, Pedro Henrique Doleski, Lívia Gelain Castilhos, Michelle Melgarejo da Rosa, Viviane do Carmo Gonçalves Souza, Fabiano Barbosa Carvalho, Patrícia Marisco, et al. 2013. Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiology of Learning and Memory 100. Elsevier Inc.: 98–107.  https://doi.org/10.1016/j.nlm.2012.12.007.CrossRefGoogle Scholar
  32. 32.
    Gu, Wenyi, Chengtie Wu, Jiezhong Chen, and Yin Xiao. 2013. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International Journal of Nanomedicine 8. Dove Press: 2305.CrossRefGoogle Scholar
  33. 33.
    Zheng, Zhaoling, YanHua Sun, Ziliang Liu, Mingqin Zhang, Chunqing Li, and Hui Cai. 2015. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Design, Development and Therapy 9. Dove Press: 4931.Google Scholar
  34. 34.
    Mantovani, Alberto, Marco A. Cassatella, Claudio Costantini, and Sébastien Jaillon. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11. Nature Publishing Group: 519.CrossRefGoogle Scholar
  35. 35.
    Simjee, Shabana Usman, Huma Jawed, Javeria Quadri, and Sheikh Arshad Saeed. 2007. Quantitative gait analysis as a method to assess mechanical hyperalgesia modulated by disease-modifying antirheumatoid drugs in the adjuvant-induced arthritic rat. Arthritis Research & Therapy 9. BioMed Central: R91.CrossRefGoogle Scholar
  36. 36.
    Gemeinhardt, Ines, Dorothee Puls, Ole Gemeinhardt, Matthias Taupitz, Susanne Wagner, Beatrix Schnorr, Kai Licha, Michael Schirner, Bernd Ebert, and Diethard Petzelt. 2012. Near-infrared fluorescence imaging of experimentally collagen-induced arthritis in rats using the nonspecific dye tetrasulfocyanine in comparison with gadolinium-based contrast-enhanced magnetic resonance imaging, histology, and clinical score. Journal of Biomedical Optics 17. International Society for Optics and Photonics: 106008.CrossRefGoogle Scholar
  37. 37.
    Dalmolin, G.D., C.R. Silva, N.A.V. Bellé, M.A. Rubin, C.F. Mello, J.B. Calixto, and Juliano Ferreira. 2007. Bradykinin into amygdala induces thermal hyperalgesia in rats. Neuropeptides 41. Elsevier: 263–270.CrossRefGoogle Scholar
  38. 38.
    Cao, Yu Qing, Patrick W. Mantyh, Elaine J. Carlson, Anne-Marie Gillespie, Charles J. Epstein, and Allan I. Basbaum. 1998. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 392. Nature Publishing Group: 390.CrossRefGoogle Scholar
  39. 39.
    Venturini, Cristina G., Eliézer Jäger, Catiuscia P. Oliveira, Andressa Bernardi, Ana M.O. Battastini, Silvia S. Guterres, and Adriana R. Pohlmann. 2011. Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 375. Elsevier: 200–208.CrossRefGoogle Scholar
  40. 40.
    Jäger, Eliézer, Cristina G. Venturini, Fernanda S. Poletto, Letícia M. Colomé, João P.U. Pohlmann, Andressa Bernardi, Ana M.O. Battastini, Silvia S. Guterres, and Adriana R. Pohlmann. 2009. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. Journal of Biomedical Nanotechnology 5. American Scientific Publishers: 130–140.CrossRefGoogle Scholar
  41. 41.
    Böyum, At. 1968. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scandinavian Journal of Clinical and Laboratory Investigation 97 (Supplementum): 77–89.Google Scholar
  42. 42.
    Pilla, C., T. Emanuelli, S.S. Frassetto, A.M.O. Battastini, R.D. Dias, and J.J.F. Sarkis. 1996. ATP diphosphohydrolase activity (apyrase, EC 3.6. 1.5) in human blood platelets. Platelets 7. Taylor & Francis: 225–230.CrossRefGoogle Scholar
  43. 43.
    Bradford, Marion M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72. Elsevier: 248–254.CrossRefGoogle Scholar
  44. 44.
    Lunkes, Gilberto I.L., Daniele S. Lunkes, Vera M. Morsch, Cintia M. Mazzanti, André L.B. Morsch, Vinı́cius R. Miron, and Maria R.C. Schetinger. 2004. NTPDase and 5′-nucleotidase activities in rats with alloxan-induced diabetes. Diabetes Research and Clinical Practice 65. Elsevier: 1–6.CrossRefGoogle Scholar
  45. 45.
    Chan, Kwok-Ming, Dennis Delfert, and Kurt D. Junger. 1986. A direct colorimetric assay for Ca2+-stimulated ATPase activity. Analytical Biochemistry 157. Elsevier: 375–380.CrossRefGoogle Scholar
  46. 46.
    Giusti, G., and B. Galanti. 1984. Adenosine deaminase: colorimetric method. In Methods of Enzymatic Analysis, ed. H.U. Bergmeyer, vol. 4, 315–323.Google Scholar
  47. 47.
    Metcalf, J.A., J.I. Gallin, W.M. Nauseef, and R.K. Root. 1986. Superoxide production. Laboratory manual of neutrophil function, 109–118. New York: Raven Press.Google Scholar
  48. 48.
    Myhre, Oddvar, Jannike M. Andersen, Halvor Aarnes, and Frode Fonnum. 2003. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochemical Pharmacology 65: 1575–1582.  https://doi.org/10.1016/S0006-2952(03)00083-2.CrossRefGoogle Scholar
  49. 49.
    Jorch, Selina K., and Paul Kubes. 2017. An emerging role for neutrophil extracellular traps in noninfectious disease. Nature Medicine 23. Nature Publishing Group: 279.CrossRefGoogle Scholar
  50. 50.
    Eggleton, Paul, Ling Wang, John Penhallow, Neville Crawford, and K. Alun Brown. 1995. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Annals of the Rheumatic Diseases 54. BMJ Publishing Group: 916.CrossRefGoogle Scholar
  51. 51.
    Wright, Helen L., Robert J. Moots, and Steven W. Edwards. 2014. The multifactorial role of neutrophils in rheumatoid arthritis. Nature Reviews Rheumatology 10. Nature Publishing Group: 593.CrossRefGoogle Scholar
  52. 52.
    Wipke, Brian T., and Paul M. Allen. 2001. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. The Journal of Immunology 167. Am Assoc Immnol: 1601–1608.CrossRefGoogle Scholar
  53. 53.
    Tanaka, Daisuke, Takashi Kagari, Hiromi Doi, and Takaichi Shimozato. 2006. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology 119. Wiley Online Library: 195–202.CrossRefGoogle Scholar
  54. 54.
    Wang, Xu, and Deyu Chen. 2018. Purinergic regulation of neutrophil function. Frontiers in Immunology 9. Frontiers: 399.CrossRefGoogle Scholar
  55. 55.
    Chen, Yu, Yongli Yao, Yuka Sumi, Andrew Li, T.O. Uyen Kim, Abdallah Elkhal, Yoshiaki Inoue, Tobias Woehrle, Qin Zhang, and Carl Hauser. 2010. Purinergic signaling: a fundamental mechanism in neutrophil activation. Science Signaling 3. American Association for the Advancement of Science: ra45–ra45.Google Scholar
  56. 56.
    Chen, Yu, Ross Corriden, Yoshiaki Inoue, Linda Yip, Naoyuki Hashiguchi, Annelies Zinkernagel, Victor Nizet, Paul A. Insel, and Wolfgang G. Junger. 2006. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314: 1792 LP–1791795.CrossRefGoogle Scholar
  57. 57.
    Corriden, Ross, Yu Chen, Yoshiaki Inoue, Guido Beldi, Simon C. Robson, Paul A. Insel, and Wolfgang G. Junger. 2008. Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. Journal of Biological Chemistry 283. ASBMB: 28480–28486.CrossRefGoogle Scholar
  58. 58.
    Baroja-Mazo, Alberto, and Pablo Pelegrín. 2012. Modulating P2X7 receptor signaling during rheumatoid arthritis: new therapeutic approaches for bisphosphonates. Journal of Osteoporosis 2012: 408242.  https://doi.org/10.1155/2012/408242.CrossRefGoogle Scholar
  59. 59.
    Takahashi, Katsushi, Yasunori Nakayama, Hideki Horiuchi, Tomohiro Ohta, Keiji Komoriya, Hitoshi Ohmori, and Takashi Kamimura. 2002. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1 α, 25-dihydroxyvitamin D3. Immunopharmacology and Immunotoxicology 24. Taylor & Francis: 335–347.CrossRefGoogle Scholar
  60. 60.
    Srivastava, R. 1989. Inhibition of neutrophil response by curcumin. Agents and Actions 28. Springer: 298–303.CrossRefGoogle Scholar
  61. 61.
    Jancinová, Viera, Tomas Perecko, Radomir Nosal, Daniela Kostálová, Katarína Bauerová, and Katarína Drábiková. 2009. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition. European Journal of Pharmacology 612: 161–166.CrossRefGoogle Scholar
  62. 62.
    Rani, H. Surekha, G. Madhavi, B.M.V. Srikanth, P. Jharna, U.R.K. Rao, and A. Jyothy. 2006. Serum ADA and C-reactive protein in rheumatoid arthritis. International Journal of Human Genetics 6. Taylor & Francis: 195–198.CrossRefGoogle Scholar
  63. 63.
    Yuji, Nakamachi, Koshiba Masahiro, Nakazawa Takashi, Hatachi Saori, Saura Ryuichi, Kurosaka Masahiro, Kusaka Hideaki, and Kumagai Shunichi. 2003. Specific increase in enzymatic activity of adenosine deaminase 1 in rheumatoid synovial fibroblasts. Arthritis and Rheumatism 48. Wiley-Blackwell: 668–674.  https://doi.org/10.1002/art.10956.CrossRefGoogle Scholar
  64. 64.
    Al-Shukaili, Ahmed, Juma Al-Kaabi, and Batool Hassan. 2008. A comparative study of interleukin-1β production and P2x7 expression after Atp stimulation by peripheral blood mononuclear cells isolated from rheumatoid arthritis patients and normal healthy controls. Inflammation 13: 84–90.  https://doi.org/10.1007/s10753-007-9052-0.CrossRefGoogle Scholar
  65. 65.
    Jaques, dos Santos, Jeandre Augusto, Lara Vargas Becker, Viviane do Carmo Gonçalves Souza, Cláudio Alberto Martins Leal, Tatiana Montagner Dalcin Bertoldo, Kelly Vargas Pinheiro, Vera Maria Morsch, Maria Rosa Chitolina Schetinger, and Daniela Bitencourt Rosa Leal. 2013. Activities of enzymes that hydrolyze adenine nucleotides in lymphocytes from patients with rheumatoid arthritis. Cell Biochemistry and Function 31. Wiley Online Library: 395–399.CrossRefGoogle Scholar
  66. 66.
    Huang, Steve, Sergey Apasov, Masahiro Koshiba, and Michail Sitkovsky. 1997. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90. Am Soc Hematology: 1600–1610.Google Scholar
  67. 67.
    Ohta, Akio, and Michail Sitkovsky. 2014. Extracellular adenosine-mediated modulation of regulatory T cells. Frontiers in Immunology 5: 1–9.  https://doi.org/10.3389/fimmu.2014.00304.CrossRefGoogle Scholar
  68. 68.
    Jeffery, Louisa E., Karim Raza, and Martin Hewison. 2015. Vitamin D in rheumatoid arthritis—towards clinical application. Nature Reviews Rheumatology 12. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.: 201.CrossRefGoogle Scholar
  69. 69.
    Bouillon, R. 2017. Extra-skeletal effects of vitamin D. In Frontiers of hormone research, vol. 50, 72–88.  https://doi.org/10.1159/000486072.Google Scholar
  70. 70.
    Sikora, Ewa, Anna Bielak-Zmijewska, Katarzyna Piwocka, Skierski Janusz, and Ewa Radziszewska. 1997. Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochemical Pharmacology 54: 899–907.  https://doi.org/10.1016/S0006-2952(97)00251-7.CrossRefGoogle Scholar
  71. 71.
    Shirley, Shawna A., Alison J. Montpetit, R.F. Lockey, and Shyam S. Mohapatra. 2008. Curcumin prevents human dendritic cell response to immune stimulants. Biochemical and Biophysical Research Communications 374: 431–436.  https://doi.org/10.1016/j.bbrc.2008.07.051.CrossRefGoogle Scholar
  72. 72.
    Harifi, Ghita, and Jean Sibilia. 2016. Pathogenic role of platelets in rheumatoid arthritis and systemic autoimmune diseases: perspectives and therapeutic aspects. Saudi Medical Journal 37: 354.CrossRefGoogle Scholar
  73. 73.
    Mac Mullan, Paul A., Aaron J. Peace, Anne M. Madigan, Anthony F. Tedesco, Dermot Kenny, and Geraldine M. McCarthy. 2010. Platelet hyper-reactivity in active inflammatory arthritis is unique to the adenosine diphosphate pathway: a novel finding and potential therapeutic target. Rheumatology 49: 240–245.CrossRefGoogle Scholar
  74. 74.
    Ehlers, Raila, Valentin Ustinov, Zhiping Chen, Xiaobin Zhang, Ravi Rao, F. William Luscinskas, Jose Lopez, Edward Plow, and Daniel I. Simon. 2003. Targeting platelet–leukocyte interactions: identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibα. Journal of Experimental Medicine 198. Rockefeller University Press: 1077–1088.CrossRefGoogle Scholar
  75. 75.
    Becker, Lara V., Cintia S. Rosa, Viviane do CG Souza, Margarete D. Bagatini, Emerson A. Casali, Claudio Alberto M. Leal, João Carlos N. da Silva, Maria Beatriz Moretto, Francielle V. de Pinheiro, and Vera Maria Morsch. 2010. Activities of enzymes that hydrolyze adenine nucleotides in platelets from patients with rheumatoid arthritis. Clinical Biochemistry 43. Elsevier: 1096–1100.CrossRefGoogle Scholar
  76. 76.
    Erer, Burak, Gulsen Yilmaz, Fatma Meric Yilmaz, and Seyfettin Koklu. 2009. Assessment of adenosine deaminase levels in rheumatoid arthritis patients receiving anti-TNF-α therapy. Rheumatology International 29. Springer: 651–654.CrossRefGoogle Scholar
  77. 77.
    Demir, Gülseren, Pınar Borman, Figen Ayhan, Tuba Özgün, Ferda Kaygısız, and Gulsen Yilmez. 2014. Serum adenosine deaminase level is high but not related with disease activity parameters in patients with rheumatoid arthritis. The open rheumatology journal 8. Bentham Science Publishers: 24.CrossRefGoogle Scholar
  78. 78.
    Zamani, Batool, Raika Jamali, and Arsia Jamali. 2012. Serum adenosine deaminase may predict disease activity in rheumatoid arthritis. Rheumatology International 32: 1967–1975.  https://doi.org/10.1007/s00296-011-1912-0.CrossRefGoogle Scholar
  79. 79.
    Stamp, Lisa K., Irada Khalilova, Joanna M. Tarr, Revathy Senthilmohan, Rufus Turner, Richard C. Haigh, Paul G. Winyard, and Anthony J. Kettle. 2012. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 51. Oxford University Press: 1796–1803.CrossRefGoogle Scholar
  80. 80.
    Aratani, Yasuaki. 2018. Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics 640: 47–52.  https://doi.org/10.1016/j.abb.2018.01.004.CrossRefGoogle Scholar
  81. 81.
    Lefkowitz, Doris L., and Stanley S. Lefkowitz. 2001. Macrophage–neutrophil interaction: a paradigm for chronic inflammation revisited. Immunology and Cell Biology 79. Wiley Online Library: 502–506.CrossRefGoogle Scholar
  82. 82.
    Husby, G. 1985. Amyloidosis and rheumatoid arthritis. Clinical and Experimental Rheumatology 3: 173–180.Google Scholar
  83. 83.
    Helin, Heikki J., Markku M. Korpela, Jukka T. Mustonen, and Amos I. Pasternack. 1995. Renal biopsy findings and clinicopathologic correlations in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 38. Wiley Online Library: 242–247.CrossRefGoogle Scholar
  84. 84.
    Bulcão, Rachel P., Fernando A. Freitas, Cristina G. Venturini, Eliane Dallegrave, Juliano Durgante, Gabriela Göethel, Carlos Thadeu S. Cerski, Paulo Zielinsky, Adriana R. Pohlmann, and Sílvia S. Guterres. 2012. Acute and subchronic toxicity evaluation of poly (ɛ-caprolactone) lipid-core nanocapsules in rats. Toxicological Sciences 132. Oxford University Press: 162–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jean Lucas G. da Silva
    • 1
    • 2
  • Daniela F. Passos
    • 1
    • 2
  • Viviane M. Bernardes
    • 1
    • 2
  • Fernanda L. Cabral
    • 1
    • 3
  • Paulo G. Schimites
    • 1
    • 3
  • Alessandra G. Manzoni
    • 1
    • 2
  • Edilene Gadelha de Oliveira
    • 4
  • Cristiane de Bona da Silva
    • 3
  • Ruy Carlos Ruver Beck
    • 4
  • Matheus H. Jantsch
    • 1
  • Roberto M. Maciel
    • 5
  • Daniela B. R. Leal
    • 1
    • 2
    Email author
  1. 1.Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da SaúdeUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de Patologia, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations