Advertisement

Inflammation

pp 1–13 | Cite as

Targeting NLRP3 Inflammasome in Inflammatory Bowel Disease: Putting out the Fire of Inflammation

  • Bo-Zong ShaoEmail author
  • Shu-Ling Wang
  • Peng Pan
  • Jun Yao
  • Kai Wu
  • Zhao-Shen LiEmail author
  • Yu BaiEmail author
  • En-Qiang LinghuEmail author
REVIEW
  • 151 Downloads

Abstract

Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the colon and small intestine, comprised of ulcerative colitis and Crohn’s disease. Among the complicated pathogenic factors of IBD, the overaction of inflammatory and immune reaction serves as an important factor. Inflammasome is a form of innate immunity as well as inflammation. Among all kinds of inflammasomes, the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the most studied one, and has been revealed to be involved in the pathogenesis and progression of IBD. Here, in this review, the association between the NLRP3 inflammasome and IBD will be discussed. Furthermore, several NLRP3 inflammasome inhibitors which have been demonstrated to be effective in the alleviation of IBD will be described in this review.

KEY WORDS

inflammatory bowel disease NLRP3 inflammasome ulcerative colitis Crohn’s disease inflammation autophagy 

Notes

Acknowledgments

Dr. Yu Bai was supported by the National Key R&D Program of China (2017YFC1308800, 2018YFC1313103), National Natural Science Foundation of China (Grant Nos. 81670473 and 81873546), and Three Engineering Training Funds in Shenzhen (No. SYLY201718). Dr. Jun Yao was supported by the National Natural Science Foundation of China (Grant No. 81800489), Three engineering training funds in Shenzhen (No. SYLY201718), and Technical Research and Development Project of Shenzhen (No. JCYJ20150403101028164 and JCYJ20170307100538697).

Author Contributions

B-ZS, S-LW, and PP retrieved and analyzed concerned literatures. B-ZS and JY wrote the manuscript. S-LW and PP designed the table and figure. E-QL, YB, and Z-SL revised the manuscript. All the authors agreed to be accountable for the content of the work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tian, S., J. Wang, H. Yu, J. Wang, and W. Zhu. 2018. Effects of galacto-oligosaccharides on growth and gut function of newborn suckling piglets. Journal of Animal Science and Biotechnology 9: 75.  https://doi.org/10.1186/s40104-018-0290-9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Petschow, B.W., B.P. Burnett, A.L. Shaw, E.M. Weaver, and G.L. Klein. 2015. Dietary requirement for serum-derived bovine immunoglobulins in the clinical management of patients with enteropathy. Digestive Diseases and Sciences 60 (1): 13–23.  https://doi.org/10.1007/s10620-014-3322-0.CrossRefPubMedGoogle Scholar
  3. 3.
    Mizoguchi, A. 2017. A novel intestinal organoid-based in vitro co-culture system to dissect out the initial host defense system. Journal of Gastroenterology 52 (1): 123–124.  https://doi.org/10.1007/s00535-016-1243-8.CrossRefPubMedGoogle Scholar
  4. 4.
    Fornai, M., R.M. van den Wijngaard, L. Antonioli, C. Pellegrini, C. Blandizzi, and W.J. de Jonge. 2018. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 30: e13406.  https://doi.org/10.1111/nmo.13406.CrossRefPubMedGoogle Scholar
  5. 5.
    Allaire, J.M., S.M. Crowley, H.T. Law, S.Y. Chang, H.J. Ko, and B.A. Vallance. 2018. The intestinal epithelium: central coordinator of mucosal immunity. Trends in Immunology 39 (9): 677–696.  https://doi.org/10.1016/j.it.2018.04.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Uhlig, H.H. 2013. Monogenic diseases associated with intestinal inflammation: Implications for the understanding of inflammatory bowel disease. Gut 62 (12): 1795–1805.  https://doi.org/10.1136/gutjnl-2012-303956.CrossRefPubMedGoogle Scholar
  7. 7.
    Mannon, P., and W. Reinisch. 2012. Interleukin 13 and its role in gut defence and inflammation. Gut 61 (12): 1765–1773.  https://doi.org/10.1136/gutjnl-2012-303461.CrossRefPubMedGoogle Scholar
  8. 8.
    Ullman, T.A., and S.H. Itzkowitz. 2011. Intestinal inflammation and cancer. Gastroenterology 140 (6): 1807–1816.  https://doi.org/10.1053/j.gastro.2011.01.057.CrossRefPubMedGoogle Scholar
  9. 9.
    Strober, W., and I.J. Fuss. 2011. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140 (6): 1756–1767.  https://doi.org/10.1053/j.gastro.2011.02.016.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xu, Y.L., H.L. Tang, S.Y. Zhu, H.R. Peng, Z.T. Qi, and W. Wang. 2017. RIP3 deficiency exacerbates inflammation in dextran sodium sulfate-induced ulcerative colitis mice model. Cell Biochemistry and Function 35 (3): 156–163.  https://doi.org/10.1002/cbf.3257.CrossRefPubMedGoogle Scholar
  11. 11.
    Ungaro, R., S. Mehandru, P.B. Allen, L. Peyrin-Biroulet, and J.F. Colombel. 2017. Ulcerative colitis. Lancet 389 (10080): 1756–1770.  https://doi.org/10.1016/S0140-6736(16)32126-2.CrossRefPubMedGoogle Scholar
  12. 12.
    Ziade, F., C. Rungoe, T. Kallemose, A. Paerregaard, A.V. Wewer, and C. Jakobsen. 2018. Biochemical markers, genotype, and inflammation in pediatric inflammatory bowel disease: a Danish population-based study. Dig Dis: 1–7.  https://doi.org/10.1159/000494215.
  13. 13.
    Nanini, H.F., C. Bernardazzi, F. Castro, and H.S.P. de Souza. 2018. Damage-associated molecular patterns in inflammatory bowel disease: from biomarkers to therapeutic targets. World Journal of Gastroenterology 24 (41): 4622–4634.  https://doi.org/10.3748/wjg.v24.i41.4622.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Elia, G., and G. Guglielmi. 2018. CXCL9 chemokine in ulcerative colitis. La Clinica Terapeutica 169 (5): e235–e241.  https://doi.org/10.7417/CT.2018.2085.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang, R., L. Wang, Y. Luo, D. Wang, R. Du, J. Du, and Y. Wang. 2018. Maggot protein ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Bioscience Reports.  https://doi.org/10.1042/BSR20181799.
  16. 16.
    Luan, J., and D. Ju. 2018. Inflammasome: a double-edged sword in liver diseases. Frontiers in Immunology 9: 2201.  https://doi.org/10.3389/fimmu.2018.02201.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cypryk, W., T.A. Nyman, and S. Matikainen. 2018. From inflammasome to exosome-does extracellular vesicle secretion constitute an inflammasome-dependent immune response? Frontiers in Immunology 9: 2188.  https://doi.org/10.3389/fimmu.2018.02188.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kumar, S., and M. Dhiman. 2018. Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microbial Pathogenesis 125: 468–474.  https://doi.org/10.1016/j.micpath.2018.10.012.CrossRefPubMedGoogle Scholar
  19. 19.
    Vasconcelos, D.P., A.P. Aguas, M.A. Barbosa, P. Pelegrin, and J.N. Barbosa. 2018. The inflammasome in host response to biomaterials: bridging inflammation and tissue regeneration. Acta Biomaterialia 83: 1–12.  https://doi.org/10.1016/j.actbio.2018.09.056.CrossRefPubMedGoogle Scholar
  20. 20.
    Hayward, J.A., A. Mathur, C. Ngo, and S.M. Man. 2018. Cytosolic recognition of microbes and pathogens: inflammasomes in action. Microbiology and Molecular Biology Reviews 82 (4).  https://doi.org/10.1128/MMBR.00015-18.
  21. 21.
    Henderson, J., S. Bhattacharyya, J. Varga, and S. O'Reilly. 2018. Targeting TLRs and the inflammasome in systemic sclerosis. Pharmacology & Therapeutics.  https://doi.org/10.1016/j.pharmthera.2018.08.003.
  22. 22.
    Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187: 133–149.  https://doi.org/10.1016/j.pharmthera.2018.02.011.CrossRefGoogle Scholar
  23. 23.
    Rathinam, V.A.K., and F.K. Chan. 2018. Inflammasome, inflammation, and tissue homeostasis. Trends in Molecular Medicine 24 (3): 304–318.  https://doi.org/10.1016/j.molmed.2018.01.004.CrossRefPubMedGoogle Scholar
  24. 24.
    Grebe, A., F. Hoss, and E. Latz. 2018. NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research 122 (12): 1722–1740.  https://doi.org/10.1161/CIRCRESAHA.118.311362.CrossRefPubMedGoogle Scholar
  25. 25.
    Gong, T., Y. Yang, T. Jin, W. Jiang, and R. Zhou. 2018. Orchestration of NLRP3 Inflammasome activation by ion fluxes. Trends in Immunology 39 (5): 393–406.  https://doi.org/10.1016/j.it.2018.01.009.CrossRefPubMedGoogle Scholar
  26. 26.
    Toldo, S., and A. Abbate. 2018. The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews. Cardiology 15 (4): 203–214.  https://doi.org/10.1038/nrcardio.2017.161.CrossRefPubMedGoogle Scholar
  27. 27.
    Horng, T. 2014. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends in Immunology 35 (6): 253–261.  https://doi.org/10.1016/j.it.2014.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chung, I.C., C.N. OuYang, S.N. Yuan, H.C. Lin, K.Y. Huang, P.S. Wu, C.Y. Liu, et al. 2019. Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates colitis-associated colorectal cancer in mice. Nutrients 11 (3).  https://doi.org/10.3390/nu11030516.
  29. 29.
    Shen, P., Z. Zhang, K. Zhu, H. Cao, J. Liu, X. Lu, Y. Li, et al. 2019. Evodiamine prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-kappaB and NLRP3 inflammasome. Biomedicine & Pharmacotherapy 110: 786–795.  https://doi.org/10.1016/j.biopha.2018.12.033.CrossRefGoogle Scholar
  30. 30.
    Mariathasan, S., K. Newton, D.M. Monack, D. Vucic, D.M. French, W.P. Lee, M. Roose-Girma, S. Erickson, and V.M. Dixit. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430 (6996): 213–218.  https://doi.org/10.1038/nature02664.CrossRefPubMedGoogle Scholar
  31. 31.
    Alexandre, Y.O., C.D. Cocita, S. Ghilas, and M. Dalod. 2014. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Frontiers in Microbiology 5: 378.  https://doi.org/10.3389/fmicb.2014.00378.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Song, N., and T. Li. 2018. Regulation of NLRP3 Inflammasome by phosphorylation. Frontiers in Immunology 9: 2305.  https://doi.org/10.3389/fimmu.2018.02305.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lei-Leston, A.C., A.G. Murphy, and K.J. Maloy. 2017. Epithelial cell inflammasomes in intestinal immunity and inflammation. Frontiers in Immunology 8: 1168.  https://doi.org/10.3389/fimmu.2017.01168.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Suarez, R., and N. Buelvas. 2015. Inflammasome: activation mechanisms. Investigación Clínica 56 (1): 74–99.PubMedGoogle Scholar
  35. 35.
    de Rivero Vaccari, J.P., W.D. Dietrich, and R.W. Keane. 2014. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. Journal of Cerebral Blood Flow and Metabolism 34 (3): 369–375.  https://doi.org/10.1038/jcbfm.2013.227.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Petrilli, V., S. Papin, and J. Tschopp. 2005. The inflammasome. Current Biology 15 (15): R581.  https://doi.org/10.1016/j.cub.2005.07.049.CrossRefPubMedGoogle Scholar
  37. 37.
    Liu, Q., D. Zhang, D. Hu, X. Zhou, and Y. Zhou. 2018. The role of mitochondria in NLRP3 inflammasome activation. Molecular Immunology 103: 115–124.  https://doi.org/10.1016/j.molimm.2018.09.010.CrossRefPubMedGoogle Scholar
  38. 38.
    Sarvestani, S.T., and J.L. McAuley. 2017. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Research 148: 32–42.  https://doi.org/10.1016/j.antiviral.2017.10.020.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim, J.K., H.S. Jin, H.W. Suh, and E.K. Jo. 2017. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunology and Cell Biology 95 (7): 584–592.  https://doi.org/10.1038/icb.2017.23.CrossRefPubMedGoogle Scholar
  40. 40.
    Inoue, M., and M.L. Shinohara. 2013. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis 2013: 859145–859148.  https://doi.org/10.1155/2013/859145.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wakabayashi, T., M. Takahashi, D. Yamamuro, T. Karasawa, A. Takei, S. Takei, H. Yamazaki, S. Nagashima, K. Ebihara, M. Takahashi, and S. Ishibashi. 2018. Inflammasome activation aggravates cutaneous Xanthomatosis and atherosclerosis in ACAT1 (acyl-CoA cholesterol acyltransferase 1) deficiency in bone marrow. Arteriosclerosis, Thrombosis, and Vascular Biology 38 (11): 2576–2589.  https://doi.org/10.1161/ATVBAHA.118.311648.CrossRefPubMedGoogle Scholar
  42. 42.
    Willingham, S.B., I.C. Allen, D.T. Bergstralh, W.J. Brickey, M.T. Huang, D.J. Taxman, J.A. Duncan, and J.P. Ting. 2009. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology 183 (3): 2008–2015.  https://doi.org/10.4049/jimmunol.0900138.CrossRefGoogle Scholar
  43. 43.
    Jorgensen, I., and E.A. Miao. 2015. Pyroptotic cell death defends against intracellular pathogens. Immunological Reviews 265 (1): 130–142.  https://doi.org/10.1111/imr.12287.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shirasuna, K., T. Karasawa, and M. Takahashi. 2018. Exogenous nanoparticles and endogenous crystalline molecules as danger signals for the NLRP3 inflammasomes. Journal of Cellular Physiology.  https://doi.org/10.1002/jcp.27475.
  45. 45.
    Groslambert, M., and B.F. Py. 2018. Spotlight on the NLRP3 inflammasome pathway. Journal of Inflammation Research 11: 359–374.  https://doi.org/10.2147/JIR.S141220.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    He, Y., H. Hara, and G. Nunez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41 (12): 1012–1021.  https://doi.org/10.1016/j.tibs.2016.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shao, B.Z., Z.Q. Xu, B.Z. Han, D.F. Su, and C. Liu. 2015. NLRP3 inflammasome and its inhibitors: a review. Frontiers in Pharmacology 6: 262.  https://doi.org/10.3389/fphar.2015.00262.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Latz, E., and P. Duewell. 2018. NLRP3 inflammasome activation in inflammaging. Seminars in Immunology.  https://doi.org/10.1016/j.smim.2018.09.001.
  49. 49.
    Mangan, M.S.J., E.J. Olhava, W.R. Roush, H.M. Seidel, G.D. Glick, and E. Latz. 2018. Targeting the NLRP3 inflammasome in inflammatory diseases. Nature Reviews. Drug Discovery 17 (9): 688.  https://doi.org/10.1038/nrd.2018.149.CrossRefPubMedGoogle Scholar
  50. 50.
    Chen, J., and Z.J. Chen. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564 (7734): 71–76.  https://doi.org/10.1038/s41586-018-0761-3.CrossRefPubMedGoogle Scholar
  51. 51.
    Liao, W., X. He, Z. Yi, W. Xiang, and Y. Ding. 2018. Chelidonine suppresses LPS-induced production of inflammatory mediators through the inhibitory of the TLR4/NF-kappaB signaling pathway in RAW264.7 macrophages. Biomedicine & Pharmacotherapy 107: 1151–1159.  https://doi.org/10.1016/j.biopha.2018.08.094.CrossRefGoogle Scholar
  52. 52.
    Wang, R., W. Wu, W. Li, S. Huang, Z. Li, R. Liu, Z. Shan, C. Zhang, W. Li, and S. Wang. 2018. Activation of NLRP3 Inflammasome promotes foam cell formation in vascular smooth muscle cells and atherogenesis via HMGB1. Journal of the American Heart Association 7 (19): e008596.  https://doi.org/10.1161/JAHA.118.008596.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lian, D., L. Dai, Z. Xie, X. Zhou, X. Liu, Y. Zhang, Y. Huang, and Y. Chen. 2018. Periodontal ligament fibroblasts migration injury via ROS/TXNIP/Nlrp3 inflammasome pathway with Porphyromonas gingivalis lipopolysaccharide. Molecular Immunology 103: 209–219.  https://doi.org/10.1016/j.molimm.2018.10.001.CrossRefPubMedGoogle Scholar
  54. 54.
    Lee, G.S., N. Subramanian, A.I. Kim, I. Aksentijevich, R. Goldbach-Mansky, D.B. Sacks, R.N. Germain, D.L. Kastner, and J.J. Chae. 2012. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492 (7427): 123–127.  https://doi.org/10.1038/nature11588.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gutierrez-Lopez, T.Y., L.B. Orduna-Castillo, M.N. Hernandez-Vasquez, J. Vazquez-Prado, and G. Reyes-Cruz. 2018. Calcium sensing receptor activates the NLRP3 inflammasome via a chaperone-assisted degradative pathway involving Hsp70 and LC3-II. Biochemical and Biophysical Research Communications 505 (4): 1121–1127.  https://doi.org/10.1016/j.bbrc.2018.10.028.CrossRefPubMedGoogle Scholar
  56. 56.
    Sho, T., and J. Xu. 2018. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnology and Applied Biochemistry 66: 4–13.  https://doi.org/10.1002/bab.1700.CrossRefPubMedGoogle Scholar
  57. 57.
    Bai, H., B. Yang, W. Yu, Y. Xiao, D. Yu, and Q. Zhang. 2018. Cathepsin B links oxidative stress to the activation of NLRP3 inflammasome. Experimental Cell Research 362 (1): 180–187.  https://doi.org/10.1016/j.yexcr.2017.11.015.CrossRefPubMedGoogle Scholar
  58. 58.
    Itani, S., T. Watanabe, Y. Nadatani, N. Sugimura, S. Shimada, S. Takeda, K. Otani, et al. 2016. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis. Scientific Reports 6: 39075.  https://doi.org/10.1038/srep39075.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Guo, C., Z. Chi, D. Jiang, T. Xu, W. Yu, Z. Wang, S. Chen, L. Zhang, Q. Liu, X. Guo, X. Zhang, W. Li, L. Lu, Y. Wu, B.L. Song, and D. Wang. 2018. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity. 49: 842–856.e7.  https://doi.org/10.1016/j.immuni.2018.08.021.CrossRefPubMedGoogle Scholar
  60. 60.
    Heneka, M.T., R.M. McManus, and E. Latz. 2018. Inflammasome signalling in brain function and neurodegenerative disease. Nature Reviews. Neuroscience 19 (10): 610–621.  https://doi.org/10.1038/s41583-018-0055-7.CrossRefPubMedGoogle Scholar
  61. 61.
    Afonina, I.S., Z. Zhong, M. Karin, and R. Beyaert. 2017. Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nature Immunology 18 (8): 861–869.  https://doi.org/10.1038/ni.3772.CrossRefPubMedGoogle Scholar
  62. 62.
    Baldrighi, M., Z. Mallat, and X. Li. 2017. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 267: 127–138.  https://doi.org/10.1016/j.atherosclerosis.2017.10.027.CrossRefPubMedGoogle Scholar
  63. 63.
    Du, Y., X. Gu, H. Meng, N. Aa, S. Liu, C. Peng, Y. Ge, and Z. Yang. 2018. Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-kappaB and NLRP3 inflammasome. American Journal of Translational Research 10 (12): 4235–4246.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Yu, H., M. Wu, G. Lu, T. Cao, N. Chen, Y. Zhang, Z. Jiang, H. Fan, and R. Yao. 2018. Prednisone alleviates demyelination through regulation of the NLRP3 inflammasome in a C57BL/6 mouse model of cuprizone-induced demyelination. Brain Research 1678: 75–84.  https://doi.org/10.1016/j.brainres.2017.09.034.CrossRefPubMedGoogle Scholar
  65. 65.
    Ward, R., W. Li, Y. Abdul, L. Jackson, G. Dong, S. Jamil, J. Filosa, S.C. Fagan, and A. Ergul. 2019. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacological Research 142: 237–250.  https://doi.org/10.1016/j.phrs.2019.01.035.CrossRefPubMedGoogle Scholar
  66. 66.
    Perera, A.P., R. Fernando, T. Shinde, R. Gundamaraju, B. Southam, S.S. Sohal, A.A.B. Robertson, K. Schroder, D. Kunde, and R. Eri. 2018. MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Scientific Reports 8 (1): 8618.  https://doi.org/10.1038/s41598-018-26775-w.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhao, S., Z. Gong, X. Du, C. Tian, L. Wang, J. Zhou, C. Xu, Y. Chen, W. Cai, and J. Wu. 2018. Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. Journal of Immunology Research 2018: 2481418.  https://doi.org/10.1155/2018/2481418.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    He, X., Z. Wei, J. Wang, J. Kou, W. Liu, Y. Fu, and Z. Yang. 2016. Alpinetin attenuates inflammatory responses by suppressing TLR4 and NLRP3 signaling pathways in DSS-induced acute colitis. Scientific Reports 6: 28370.  https://doi.org/10.1038/srep28370.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zherebiatiev, A., and A. Kamyshnyi. 2016. Expression levels of proinflammatory cytokines and NLRP3 Inflammasome in an experimental model of Oxazolone-induced colitis. Iranian Journal of Allergy, Asthma, and Immunology 15 (1): 39–45.PubMedGoogle Scholar
  70. 70.
    Hodson, R. 2016. Inflammatory bowel disease. Nature 540 (7634): S97.  https://doi.org/10.1038/540S97a.CrossRefPubMedGoogle Scholar
  71. 71.
    Ford, A.C., P. Moayyedi, and S.B. Hanauer. 2013. Ulcerative colitis. BMJ 346: f432.  https://doi.org/10.1136/bmj.f432.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang, S.L., S.N. Wang, and C.Y. Miao. 2017. Influence of microbiota on intestinal immune system in ulcerative colitis and its intervention. Frontiers in Immunology 8: 1674.  https://doi.org/10.3389/fimmu.2017.01674.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jairath, V., J. Jeyarajah, G. Zou, C.E. Parker, A. Olson, R. Khanna, G.R. D'Haens, W.J. Sandborn, and B.G. Feagan. 2018. A composite disease activity index for early drug development in ulcerative colitis: development and validation of the UC-100 score. The Lancet Gastroenterology & Hepatology.  https://doi.org/10.1016/S2468-1253(18)30306-6.
  74. 74.
    Carbonnel, F. 2018. Towards more efficient assessment of ulcerative colitis drugs. The Lancet Gastroenterology & Hepatology.  https://doi.org/10.1016/S2468-1253(18)30342-X.
  75. 75.
    Laharie, D. 2017. Towards therapeutic choices in ulcerative colitis. Lancet 390 (10090): 98–99.  https://doi.org/10.1016/S0140-6736(17)31263-1.CrossRefPubMedGoogle Scholar
  76. 76.
    de Souza, H.S.P. 2017. Etiopathogenesis of inflammatory bowel disease: today and tomorrow. Current Opinion in Gastroenterology 33 (4): 222–229.  https://doi.org/10.1097/MOG.0000000000000364.CrossRefPubMedGoogle Scholar
  77. 77.
    Paramsothy, S., M.A. Kamm, N.O. Kaakoush, A.J. Walsh, J. van den Bogaerde, D. Samuel, R.W.L. Leong, et al. 2017. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 389 (10075): 1218–1228.  https://doi.org/10.1016/S0140-6736(17)30182-4.CrossRefPubMedGoogle Scholar
  78. 78.
    Hanaei, S., M. Sadr, A. Rezaei, S. Shahkarami, N. Ebrahimi Daryani, A.Z. Bidoki, and N. Rezaei. 2018. Association of NLRP3 single nucleotide polymorphisms with ulcerative colitis: a case-control study. Clinics and Research in Hepatology and Gastroenterology 42 (3): 269–275.  https://doi.org/10.1016/j.clinre.2017.09.003.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang, H.X., Z.T. Wang, X.X. Lu, Y.G. Wang, J. Zhong, and J. Liu. 2014. NLRP3 gene is associated with ulcerative colitis (UC), but not Crohn’s disease (CD), in Chinese Han population. Inflammation Research 63 (12): 979–985.  https://doi.org/10.1007/s00011-014-0774-9.CrossRefPubMedGoogle Scholar
  80. 80.
    Yang, S.K., H. Kim, M. Hong, J. Lim, E. Choi, B.D. Ye, S.K. Park, and K. Song. 2011. Association of CARD8 with inflammatory bowel disease in Koreans. Journal of Human Genetics 56 (3): 217–223.  https://doi.org/10.1038/jhg.2010.170.CrossRefPubMedGoogle Scholar
  81. 81.
    Mai, C.T., M.M. Wu, C.L. Wang, Z.R. Su, Y.Y. Cheng, and X.J. Zhang. 2018. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Molecular Immunology 105: 76–85.  https://doi.org/10.1016/j.molimm.2018.10.015.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang, Z., S. Li, H. Cao, P. Shen, J. Liu, Y. Fu, Y. Cao, and N. Zhang. 2019. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food & Function.  https://doi.org/10.1039/c8fo01699b.
  83. 83.
    Ruiz, P.A., B. Moron, H.M. Becker, S. Lang, K. Atrott, M.R. Spalinger, M. Scharl, et al. 2017. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66 (7): 1216–1224.  https://doi.org/10.1136/gutjnl-2015-310297.CrossRefPubMedGoogle Scholar
  84. 84.
    Ke, P., B.Z. Shao, Z.Q. Xu, W. Wei, B.Z. Han, X.W. Chen, D.F. Su, and C. Liu. 2016. Activation of cannabinoid receptor 2 ameliorates DSS-induced colitis through inhibiting NLRP3 inflammasome in macrophages. PLoS One 11 (9): e0155076.  https://doi.org/10.1371/journal.pone.0155076.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Marchesi, J., and F. Shanahan. 2007. The normal intestinal microbiota. Current Opinion in Infectious Diseases 20 (5): 508–513.  https://doi.org/10.1097/QCO.0b013e3282a56a99.CrossRefPubMedGoogle Scholar
  86. 86.
    Hooper, L.V., D.R. Littman, and A.J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science 336 (6086): 1268–1273.  https://doi.org/10.1126/science.1223490.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Turnbaugh, P.J., M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, M.L. Sogin, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457 (7228): 480–484.  https://doi.org/10.1038/nature07540.CrossRefPubMedGoogle Scholar
  88. 88.
    Faith, J.J., J.L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf, A.L. Goodman, J.C. Clemente, R. Knight, A.C. Heath, R.L. Leibel, M. Rosenbaum, and J.I. Gordon. 2013. The long-term stability of the human gut microbiota. Science 341 (6141): 1237439.  https://doi.org/10.1126/science.1237439.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang, Z., P. Shen, X. Lu, Y. Li, J. Liu, B. Liu, Y. Fu, Y. Cao, and N. Zhang. 2017. In vivo and in vitro study on the efficacy of terpinen-4-ol in dextran sulfate sodium-induced mice experimental colitis. Frontiers in Immunology 8: 558.  https://doi.org/10.3389/fimmu.2017.00558.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang, Z., P. Shen, J. Liu, C. Gu, X. Lu, Y. Li, Y. Cao, B. Liu, Y. Fu, and N. Zhang. 2017. In vivo study of the efficacy of the essential oil of Zanthoxylum bungeanum pericarp in dextran sulfate sodium-induced murine experimental colitis. Journal of Agricultural and Food Chemistry 65 (16): 3311–3319.  https://doi.org/10.1021/acs.jafc.7b01323.CrossRefPubMedGoogle Scholar
  91. 91.
    Brooks, M. 1981. Crohn’s disease, a functional deficiency of IgA? Lancet 1 (8212): 158.CrossRefPubMedGoogle Scholar
  92. 92.
    Baumgart, D.C., and W.J. Sandborn. 2012. Crohn’s disease. Lancet 380 (9853): 1590–1605.  https://doi.org/10.1016/S0140-6736(12)60026-9.CrossRefPubMedGoogle Scholar
  93. 93.
    Senussi, N.H. 2017. Exclusive and partial enteral nutrition for Crohn’s disease. Lancet 390 (10101): 1486.  https://doi.org/10.1016/S0140-6736(17)32392-9.CrossRefPubMedGoogle Scholar
  94. 94.
    Cho, J.H., and S.R. Brant. 2011. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140 (6): 1704–1712.  https://doi.org/10.1053/j.gastro.2011.02.046.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Dessein, R., M. Chamaillard, and S. Danese. 2008. Innate immunity in Crohn’s disease: the reverse side of the medal. Journal of Clinical Gastroenterology 42 (Suppl 3 Pt 1): S144–S147.  https://doi.org/10.1097/MCG.0b013e3181662c90.CrossRefPubMedGoogle Scholar
  96. 96.
    Stefanelli, T., A. Malesci, A. Repici, S. Vetrano, and S. Danese. 2008. New insights into inflammatory bowel disease pathophysiology: paving the way for novel therapeutic targets. Current Drug Targets 9 (5): 413–418.CrossRefPubMedGoogle Scholar
  97. 97.
    Mao, L., A. Kitani, M. Similuk, A.J. Oler, L. Albenberg, J. Kelsen, A. Aktay, et al. 2018. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn’s disease. The Journal of Clinical Investigation 128 (5): 1793–1806.  https://doi.org/10.1172/JCI98642.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Vasseur, F., B. Sendid, F. Broly, C. Gower-Rousseau, A. Sarazin, A. Standaert-Vitse, J.F. Colombel, D. Poulain, and T. Jouault. 2013. The CARD8 p.C10X mutation associates with a low anti-glycans antibody response in patients with Crohn’s disease. BMC Medical Genomics 14: 35.  https://doi.org/10.1186/1471-2350-14-35.CrossRefGoogle Scholar
  99. 99.
    Bank, S., P.S. Andersen, J. Burisch, N. Pedersen, S. Roug, J. Galsgaard, S.Y. Turino, et al. 2018. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy. The Pharmacogenomics Journal 18 (1): 87–97.  https://doi.org/10.1038/tpj.2016.84.CrossRefPubMedGoogle Scholar
  100. 100.
    Villani, A.C., M. Lemire, G. Fortin, E. Louis, M.S. Silverberg, C. Collette, N. Baba, et al. 2009. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nature Genetics 41 (1): 71–76.  https://doi.org/10.1038/ng.285.CrossRefPubMedGoogle Scholar
  101. 101.
    Lewis, G.J., D.C. Massey, H. Zhang, F. Bredin, M. Tremelling, J.C. Lee, C. Berzuini, and M. Parkes. 2011. Genetic association between NLRP3 variants and Crohn’s disease does not replicate in a large UK panel. Inflammatory Bowel Diseases 17 (6): 1387–1391.  https://doi.org/10.1002/ibd.21499.CrossRefPubMedGoogle Scholar
  102. 102.
    Gu, J., G. Liu, J. Xing, H. Song, and Z. Wang. 2018. Fecal bacteria from Crohn’s disease patients more potently activated NOD-like receptors and Toll-like receptors in macrophages, in an IL-4-repressible fashion. Microbial Pathogenesis 121: 40–44.  https://doi.org/10.1016/j.micpath.2018.05.009.CrossRefPubMedGoogle Scholar
  103. 103.
    De la Fuente, M., L. Franchi, D. Araya, D. Diaz-Jimenez, M. Olivares, M. Alvarez-Lobos, D. Golenbock, et al. 2014. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. International Journal of Medical Microbiology 304 (3–4): 384–392.  https://doi.org/10.1016/j.ijmm.2014.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Edwan, J.H., R. Goldbach-Mansky, and R.A. Colbert. 2015. Identification of interleukin-1beta-producing monocytes that are susceptible to pyronecrotic cell death in patients with neonatal-onset multisystem inflammatory disease. Arthritis & Rhematology 67 (12): 3286–3297.  https://doi.org/10.1002/art.39307.CrossRefGoogle Scholar
  105. 105.
    Luo, X., Z. Yu, C. Deng, J. Zhang, G. Ren, A. Sun, S. Mani, Z. Wang, and W. Dou. 2017. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Scientific Reports 7 (1): 16374.  https://doi.org/10.1038/s41598-017-12562-6.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Lopes de Oliveira, G.A., C. Alarcon de la Lastra, M.A. Rosillo, M.L. Castejon Martinez, M. Sanchez-Hidalgo, J.V. Rolim Medeiros, and I. Villegas. 2018. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chemico-Biological Interactions 297: 25–33.  https://doi.org/10.1016/j.cbi.2018.10.020.CrossRefPubMedGoogle Scholar
  107. 107.
    Yao, Y., J. Vent-Schmidt, M.D. McGeough, M. Wong, H.M. Hoffman, T.S. Steiner, and M.K. Levings. 2015. Tr1 cells, but not Foxp3+ regulatory T cells, suppress NLRP3 Inflammasome activation via an IL-10-dependent mechanism. Journal of Immunology 195 (2): 488–497.  https://doi.org/10.4049/jimmunol.1403225.CrossRefGoogle Scholar
  108. 108.
    Wang, K., Q. Lv, Y.M. Miao, S.M. Qiao, Y. Dai, and Z.F. Wei. 2018. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochemical Pharmacology 155: 494–509.  https://doi.org/10.1016/j.bcp.2018.07.039.CrossRefPubMedGoogle Scholar
  109. 109.
    Lv, Q., K. Wang, S.M. Qiao, Y. Dai, and Z.F. Wei. 2018. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chinese Journal of Natural Medicines 16 (3): 161–174.  https://doi.org/10.1016/S1875-5364(18)30044-X.CrossRefPubMedGoogle Scholar
  110. 110.
    Bauer, C., P. Duewell, H.A. Lehr, S. Endres, and M. Schnurr. 2012. Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: Influence of genetic and environmental factors. Digestive Diseases 30 (Suppl 1): 82–90.  https://doi.org/10.1159/000341681.CrossRefPubMedGoogle Scholar
  111. 111.
    Nelson, K.M., J.L. Dahlin, J. Bisson, J. Graham, G.F. Pauli, and M.A. Walters. 2017. The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry 60 (5): 1620–1637.  https://doi.org/10.1021/acs.jmedchem.6b00975.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Gong, Z., S. Zhao, J. Zhou, J. Yan, L. Wang, X. Du, H. Li, Y. Chen, W. Cai, and J. Wu. 2018. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1beta production. Molecular Immunology 104: 11–19.  https://doi.org/10.1016/j.molimm.2018.09.004.CrossRefPubMedGoogle Scholar
  113. 113.
    Ohno, M., A. Nishida, Y. Sugitani, K. Nishino, O. Inatomi, M. Sugimoto, M. Kawahara, and A. Andoh. 2017. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 12 (10): e0185999.  https://doi.org/10.1371/journal.pone.0185999.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Grammatikopoulou, M.G., K. Gkiouras, X. Theodoridis, E. Asteriou, A. Forbes, and D.P. Bogdanos. 2018. Oral adjuvant curcumin therapy for attaining clinical remission in ulcerative colitis: a systematic review and meta-analysis of randomized controlled trials. Nutrients 10 (11).  https://doi.org/10.3390/nu10111737.
  115. 115.
    Iqbal, U., H. Anwar, and A.A. Quadri. 2018. Use of curcumin in achieving clinical and endoscopic remission in ulcerative colitis: a systematic review and meta-analysis. The American Journal of the Medical Sciences 356 (4): 350–356.  https://doi.org/10.1016/j.amjms.2018.06.023.CrossRefPubMedGoogle Scholar
  116. 116.
    Wang, Y., Q. Tang, P. Duan, and L. Yang. 2018. Curcumin as a therapeutic agent for blocking NF-kappaB activation in ulcerative colitis. Immunopharmacology and Immunotoxicology: 1–7.  https://doi.org/10.1080/08923973.2018.1469145.
  117. 117.
    Kimura, Y., S. Takahashi, and I. Yoshida. 1968. Studies on the constituents of Alpinia. XII. On the constituents of the seeds of Alpinia katsumadai hayata. I. The structure of cardamomin. Yakugaku Zasshi 88 (2): 239–241.CrossRefPubMedGoogle Scholar
  118. 118.
    Lee, J.H., H.S. Jung, P.M. Giang, X. Jin, S. Lee, P.T. Son, D. Lee, Y.S. Hong, K. Lee, and J.J. Lee. 2006. Blockade of nuclear factor-kappaB signaling pathway and anti-inflammatory activity of cardamomin, a chalcone analog from Alpinia conchigera. The Journal of Pharmacology and Experimental Therapeutics 316 (1): 271–278.  https://doi.org/10.1124/jpet.105.092486.CrossRefPubMedGoogle Scholar
  119. 119.
    Ren, G., A. Sun, C. Deng, J. Zhang, X. Wu, X. Wei, S. Mani, W. Dou, and Z. Wang. 2015. The anti-inflammatory effect and potential mechanism of cardamonin in DSS-induced colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 309 (7): G517–G527.  https://doi.org/10.1152/ajpgi.00133.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Ali, A.A., E.N. Abd Al Haleem, S.A. Khaleel, and A.S. Sallam. 2017. Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacological Reports 69 (2): 268–275.  https://doi.org/10.1016/j.pharep.2016.11.002.CrossRefPubMedGoogle Scholar
  121. 121.
    Huo, X., D. Liu, L. Gao, L. Li, and L. Cao. 2016. Flavonoids extracted from licorice prevents colitis-associated carcinogenesis in AOM/DSS mouse model. International Journal of Molecular Sciences 17 (9).  https://doi.org/10.3390/ijms17091343.
  122. 122.
    Sun, Y., Y. Zhao, J. Yao, L. Zhao, Z. Wu, Y. Wang, D. Pan, H. Miao, Q. Guo, and N. Lu. 2015. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-kappaB and NLRP3 inflammasome activation. Biochemical Pharmacology 94 (2): 142–154.  https://doi.org/10.1016/j.bcp.2015.02.002.CrossRefPubMedGoogle Scholar
  123. 123.
    Marquez-Flores, Y.K., I. Villegas, A. Cardeno, M.A. Rosillo, and C. Alarcon-de-la-Lastra. 2016. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. The Journal of Nutritional Biochemistry 30: 143–152.  https://doi.org/10.1016/j.jnutbio.2015.12.002.CrossRefPubMedGoogle Scholar
  124. 124.
    Liang, J., S. Chen, J. Chen, J. Lin, Q. Xiong, Y. Yang, J. Yuan, et al. 2018. Therapeutic roles of polysaccharides from Dendrobium Officinaleon colitis and its underlying mechanisms. Carbohydrate Polymers 185: 159–168.  https://doi.org/10.1016/j.carbpol.2018.01.013.CrossRefPubMedGoogle Scholar
  125. 125.
    Wu, D., K. Wu, Q. Zhu, W. Xiao, Q. Shan, Z. Yan, J. Wu, et al. 2018. Formononetin administration ameliorates dextran sulfate sodium-induced acute colitis by inhibiting NLRP3 Inflammasome signaling pathway. Mediators of Inflammation 2018: 3048532.  https://doi.org/10.1155/2018/3048532.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Shao, B.Z., B.Z. Han, Y.X. Zeng, D.F. Su, and C. Liu. 2016. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacologica Sinica 37 (2): 150–156.  https://doi.org/10.1038/aps.2015.87.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Liao, X., J.C. Sluimer, Y. Wang, M. Subramanian, K. Brown, J.S. Pattison, J. Robbins, J. Martinez, and I. Tabas. 2012. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metabolism 15 (4): 545–553.  https://doi.org/10.1016/j.cmet.2012.01.022.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Qian, Y.N., Y.T. Luo, H.X. Duan, L.Q. Feng, Q. Bi, Y.J. Wang, and X.Y. Yan. 2014. Adhesion molecule CD146 and its soluble form correlate well with carotid atherosclerosis and plaque instability. CNS Neuroscience & Therapeutics 20 (5): 438–445.  https://doi.org/10.1111/cns.12234.CrossRefGoogle Scholar
  129. 129.
    Singh, A., S.L. Kendall, and M. Campanella. 2018. Common traits spark the mitophagy/xenophagy interplay. Frontiers in Physiology 9: 1172.  https://doi.org/10.3389/fphys.2018.01172.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Radomski, N., A. Rebbig, R.M. Leonhardt, and M.R. Knittler. 2017. Xenophagic pathways and their bacterial subversion in cellular self-defense - pialphanutaualpha rhoepsiloniota - everything is in flux. International Journal of Medical Microbiology 308: 185–196.  https://doi.org/10.1016/j.ijmm.2017.10.012.CrossRefPubMedGoogle Scholar
  131. 131.
    He, P.X., Y.S. Che, Q.J. He, Y. Chen, and J. Ding. 2014. G226, a novel epipolythiodioxopiperazine derivative, induces autophagy and caspase-dependent apoptosis in human breast cancer cells in vitro. Acta Pharmacologica Sinica 35 (8): 1055–1064.  https://doi.org/10.1038/aps.2014.47.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Mizumura, K., A.M. Choi, and S.W. Ryter. 2014. Emerging role of selective autophagy in human diseases. Frontiers in Pharmacology 5: 244.  https://doi.org/10.3389/fphar.2014.00244.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Mathai, B.J., A.H. Meijer, and A. Simonsen. 2017. Studying autophagy in zebrafish. Cells 6 (3).  https://doi.org/10.3390/cells6030021.
  134. 134.
    Singh, U.P., N.P. Singh, B. Singh, R.L. Price, M. Nagarkatti, and P.S. Nagarkatti. 2012. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10(−/−) mice by attenuating the activation of T cells and promoting their apoptosis. Toxicology and Applied Pharmacology 258 (2): 256–267.  https://doi.org/10.1016/j.taap.2011.11.005.CrossRefPubMedGoogle Scholar
  135. 135.
    Tourteau, A., V. Andrzejak, M. Body-Malapel, L. Lemaire, A. Lemoine, R. Mansouri, M. Djouina, N. Renault, J. el Bakali, P. Desreumaux, G.G. Muccioli, D.M. Lambert, P. Chavatte, B. Rigo, N. Leleu-Chavain, and R. Millet. 2013. 3-Carboxamido-5-aryl-isoxazoles as new CB2 agonists for the treatment of colitis. Bioorganic & Medicinal Chemistry 21 (17): 5383–5394.  https://doi.org/10.1016/j.bmc.2013.06.010.CrossRefGoogle Scholar
  136. 136.
    El Bakali, J., G.G. Muccioli, M. Body-Malapel, M. Djouina, F. Klupsch, A. Ghinet, A. Barczyk, et al. 2015. Conformational restriction leading to a selective CB2 cannabinoid receptor agonist orally active against colitis. ACS Medicinal Chemistry Letters 6 (2): 198–203.  https://doi.org/10.1021/ml500439x.CrossRefPubMedGoogle Scholar
  137. 137.
    Shao, B.Z., W. Wei, P. Ke, Z.Q. Xu, J.X. Zhou, and C. Liu. 2014. Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome. CNS Neuroscience & Therapeutics 20 (12): 1021–1028.  https://doi.org/10.1111/cns.12349.CrossRefGoogle Scholar
  138. 138.
    Li, N., L. Zhou, W. Li, Y. Liu, J. Wang, and P. He. 2015. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer’s disease mouse model: a metabolomics study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 985: 54–61.  https://doi.org/10.1016/j.jchromb.2015.01.016.CrossRefPubMedGoogle Scholar
  139. 139.
    Fang, F., X. Chen, T. Huang, L.F. Lue, J.S. Luddy, and S.S. Yan. 2012. Multi-faced neuroprotective effects of ginsenoside Rg1 in an Alzheimer mouse model. Biochimica et Biophysica Acta 1822 (2): 286–292.  https://doi.org/10.1016/j.bbadis.2011.10.004.CrossRefPubMedGoogle Scholar
  140. 140.
    Liu, C., J. Wang, Y. Yang, X. Liu, Y. Zhu, J. Zou, S. Peng, et al. 2018. Ginsenoside Rd ameliorates colitis by inducing p62-driven mitophagy-mediated NLRP3 inflammasome inactivation in mice. Biochemical Pharmacology 155: 366–379.  https://doi.org/10.1016/j.bcp.2018.07.010.CrossRefPubMedGoogle Scholar
  141. 141.
    Zheng, X., M. Hu, X. Zang, Q. Fan, Y. Liu, Y. Che, X. Guan, Y. Hou, G. Wang, and H. Hao. 2019. Kynurenic acid/GPR35 axis restricts NLRP3 inflammasome activation and exacerbates colitis in mice with social stress. Brain, Behavior, and Immunity.  https://doi.org/10.1016/j.bbi.2019.02.009.
  142. 142.
    Ambros, V. 2004. The functions of animal microRNAs. Nature 431 (7006): 350–355.  https://doi.org/10.1038/nature02871.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2): 281–297.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Bartel, D.P. 2018. Metazoan microRNAs. Cell 173 (1): 20–51.  https://doi.org/10.1016/j.cell.2018.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Hessam, S., M. Sand, M. Skrygan, T. Gambichler, and F.G. Bechara. 2017. Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the inflammatory pathway of hidradenitis suppurativa. Inflammation 40 (2): 464–472.  https://doi.org/10.1007/s10753-016-0492-2.CrossRefPubMedGoogle Scholar
  146. 146.
    Bernardo, B.C., J.Y. Ooi, R.C. Lin, and J.R. McMullen. 2015. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Medicinal Chemistry 7 (13): 1771–1792.  https://doi.org/10.4155/fmc.15.107.CrossRefPubMedGoogle Scholar
  147. 147.
    Brennan, E., B. Wang, A. McClelland, M. Mohan, M. Marai, O. Beuscart, S. Derouiche, et al. 2017. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes 66 (8): 2266–2277.  https://doi.org/10.2337/db16-1405.CrossRefPubMedGoogle Scholar
  148. 148.
    Improta Caria, A.C., C.K.V. Nonaka, C.S. Pereira, M.B.P. Soares, S.G. Macambira, and B.S.F. Souza. 2018. Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. International Journal of Molecular Sciences 19 (11).  https://doi.org/10.3390/ijms19113608.
  149. 149.
    Kanneganti, T.D. 2017. Inflammatory bowel disease and the NLRP3 inflammasome. The New England Journal of Medicine 377 (7): 694–696.  https://doi.org/10.1056/NEJMcibr1706536.CrossRefPubMedGoogle Scholar
  150. 150.
    Neudecker, V., M. Haneklaus, O. Jensen, L. Khailova, J.C. Masterson, H. Tye, K. Biette, et al. 2017. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. The Journal of Experimental Medicine 214 (6): 1737–1752.  https://doi.org/10.1084/jem.20160462.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Shen, F., J. Feng, X. Wang, Z. Qi, X. Shi, Y. An, Q. Zhang, et al. 2016. Vinegar treatment prevents the development of murine experimental colitis via inhibition of inflammation and apoptosis. Journal of Agricultural and Food Chemistry 64 (5): 1111–1121.  https://doi.org/10.1021/acs.jafc.5b05415.CrossRefPubMedGoogle Scholar
  152. 152.
    Wang, X., S. Wang, C. Hu, W. Chen, Y. Shen, X. Wu, Y. Sun, and Q. Xu. 2015. A new pharmacological effect of levornidazole: inhibition of NLRP3 inflammasome activation. Biochemical Pharmacology 97 (2): 178–188.  https://doi.org/10.1016/j.bcp.2015.06.030.CrossRefPubMedGoogle Scholar
  153. 153.
    Coll, R.C., A.A. Robertson, J.J. Chae, S.C. Higgins, R. Munoz-Planillo, M.C. Inserra, I. Vetter, et al. 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine 21 (3): 248–255.  https://doi.org/10.1038/nm.3806.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Liu, W., W. Guo, J. Wu, Q. Luo, F. Tao, Y. Gu, Y. Shen, et al. 2013. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochemical Pharmacology 85 (10): 1504–1512.  https://doi.org/10.1016/j.bcp.2013.03.008.CrossRefPubMedGoogle Scholar
  155. 155.
    Guo, W., S. Hu, A. Elgehama, F. Shao, R. Ren, W. Liu, W. Zhang, et al. 2015. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition. Journal of Pharmacological Sciences 129 (2): 101–106.  https://doi.org/10.1016/j.jphs.2015.05.003.CrossRefPubMedGoogle Scholar
  156. 156.
    Zaki, M.H., K.L. Boyd, P. Vogel, M.B. Kastan, M. Lamkanfi, and T.D. Kanneganti. 2010. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32 (3): 379–391.  https://doi.org/10.1016/j.immuni.2010.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Hirota, S.A., J. Ng, A. Lueng, M. Khajah, K. Parhar, Y. Li, V. Lam, M.S. Potentier, K. Ng, M. Bawa, D.M. McCafferty, K.P. Rioux, S. Ghosh, R.J. Xavier, S.P. Colgan, J. Tschopp, D. Muruve, J.A. MacDonald, and P.L. Beck. 2011. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflammatory Bowel Diseases 17 (6): 1359–1372.  https://doi.org/10.1002/ibd.21478.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GastroenterologyGeneral Hospital of the Chinese People’s Liberation ArmyBeijingChina
  2. 2.Department of Gastroenterology, Changhai HospitalSecond Military Medical University/Naval Medical UniversityShanghaiChina
  3. 3.Department of Gastroenterology, The Second Clinical Medical CollegeJinan UniversityShenzhenChina

Personalised recommendations