Advertisement

Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function

  • Dufang Ma
  • Yong Wang
  • Guofeng Zhou
  • Yongcheng Wang
  • Xiao LiEmail author
REVIEW
  • 88 Downloads

Abstract

Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.

KEY WORDS

glycoprotein 130 cytokines interleukin-6 cytokine leukemia inhibitory factor oncostatin M ciliary neurotrophic factor cardiotrophin-1 adipocyte biological function 

Notes

Funding information

This work was supported by the Chinese National Natural Science Foundation (No. 81673970 and No. 81874449).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    White, U.A., and J.M. Stephens. 2011. The gp130 receptor cytokine family: Regulators of adipocyte development and function. Current Pharmaceutical Design 17 (4): 340–346.CrossRefGoogle Scholar
  2. 2.
    Fujio, Y., M. Maeda, T. Mohri, M. Obana, T. Iwakura, A. Hayama, T. Yamashita, H. Nakayama, and J. Azuma. 2011. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. Journal of Pharmacological Sciences 117 (4): 213–222.CrossRefGoogle Scholar
  3. 3.
    Ernst, M., and B.J. Jenkins. 2004. Acquiring signalling specificity from the cytokine receptor gp130. Trends in Genetics 20 (1): 23–32.  https://doi.org/10.1016/j.tig.2003.11.003.CrossRefGoogle Scholar
  4. 4.
    Kajimura, S. 2017. Adipose tissue in 2016: advances in the understanding of adipose tissue biology. Nature Reviews. Endocrinology 13 (2): 69–70.  https://doi.org/10.1038/nrendo.2016.211. CrossRefGoogle Scholar
  5. 5.
    Murakami, S. 2017. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sciences 186: 80–86.  https://doi.org/10.1016/j.lfs.2017.08.008. CrossRefGoogle Scholar
  6. 6.
    White, U.A., W.C. Stewart, and J.M. Stephens. 2011. Gp130 cytokines exert differential patterns of crosstalk in adipocytes both in vitro and in vivo. Obesity (Silver Spring) 19 (5): 903–910.  https://doi.org/10.1038/oby.2010.293.CrossRefGoogle Scholar
  7. 7.
    Fruhbeck, G., J. Gomez-Ambrosi, F.J. Muruzabal, and M.A. Burrell. 2001. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology. Endocrinology and Metabolism 280 (6): E827–E847.  https://doi.org/10.1152/ajpendo.2001.280.6.E827.CrossRefGoogle Scholar
  8. 8.
    Mohamed-Ali, V., S. Goodrick, A. Rawesh, D.R. Katz, J.M. Miles, J.S. Yudkin, S. Klein, and S.W. Coppack. 1997. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. The Journal of Clinical Endocrinology and Metabolism 82 (12): 4196–4200.  https://doi.org/10.1210/jcem.82.12.4450.Google Scholar
  9. 9.
    Lazar, M.A. 2005. How obesity causes diabetes: not a tall tale. Science 307 (5708): 373–375.  https://doi.org/10.1126/science.1104342.CrossRefGoogle Scholar
  10. 10.
    Sabio, G., M. Das, A. Mora, Z. Zhang, J.Y. Jun, H.J. Ko, T. Barrett, J.K. Kim, and R.J. Davis. 2008. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322 (5907): 1539–1543.  https://doi.org/10.1126/science.1160794.CrossRefGoogle Scholar
  11. 11.
    Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52 (11): 2784–2789.CrossRefGoogle Scholar
  12. 12.
    Khaodhiar, L., P.R. Ling, G.L. Blackburn, and B.R. Bistrian. 2004. Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. JPEN Journal of Parenteral and Enteral Nutrition 28 (6): 410–415.  https://doi.org/10.1177/0148607104028006410.CrossRefGoogle Scholar
  13. 13.
    Bastard, J.P., C. Jardel, E. Bruckert, P. Blondy, J. Capeau, M. Laville, H. Vidal, and B. Hainque. 2000. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. The Journal of Clinical Endocrinology and Metabolism 85 (9): 3338–3342.  https://doi.org/10.1210/jcem.85.9.6839.Google Scholar
  14. 14.
    Matthews, V.B., T.L. Allen, S. Risis, M.H. Chan, D.C. Henstridge, N. Watson, L.A. Zaffino, et al. 2010. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53 (11): 2431–2441.  https://doi.org/10.1007/s00125-010-1865-y. CrossRefGoogle Scholar
  15. 15.
    Wallenius, V., K. Wallenius, B. Ahren, M. Rudling, H. Carlsten, S.L. Dickson, C. Ohlsson, and J.O. Jansson. 2002. Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine 8 (1): 75–79.  https://doi.org/10.1038/nm0102-75.CrossRefGoogle Scholar
  16. 16.
    Mauer, J., B. Chaurasia, J. Goldau, M.C. Vogt, J. Ruud, K.D. Nguyen, S. Theurich, A.C. Hausen, J. Schmitz, H.S. Brönneke, E. Estevez, T.L. Allen, A. Mesaros, L. Partridge, M.A. Febbraio, A. Chawla, F.T. Wunderlich, and J.C. Brüning. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nature Immunology 15 (5): 423–430.  https://doi.org/10.1038/ni.2865. CrossRefGoogle Scholar
  17. 17.
    Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta 1813 (5): 878–888.  https://doi.org/10.1016/j.bbamcr.2011.01.034.CrossRefGoogle Scholar
  18. 18.
    Kraakman, M.J., T.L. Allen, M. Whitham, P. Iliades, H.L. Kammoun, E. Estevez, G.I. Lancaster, and M.A. Febbraio. 2013. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes, Obesity & Metabolism 15 (Suppl 3): 170–175.  https://doi.org/10.1111/dom.12170.CrossRefGoogle Scholar
  19. 19.
    Jostock, T., J. Mullberg, S. Ozbek, R. Atreya, G. Blinn, N. Voltz, M. Fischer, M.F. Neurath, and S. Rose-John. 2001. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. European Journal of Biochemistry 268 (1): 160–167.CrossRefGoogle Scholar
  20. 20.
    Kraakman, M.J., H.L. Kammoun, T.L. Allen, V. Deswaerte, D.C. Henstridge, E. Estevez, V.B. Matthews, B. Neill, D.A. White, A.J. Murphy, L. Peijs, C. Yang, S. Risis, C.R. Bruce, X.J. du, A. Bobik, R.S. Lee-Young, B.A. Kingwell, A. Vasanthakumar, W. Shi, A. Kallies, G.I. Lancaster, S. Rose-John, and M.A. Febbraio. 2015. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metabolism 21 (3): 403–416.  https://doi.org/10.1016/j.cmet.2015.02.006.CrossRefGoogle Scholar
  21. 21.
    Sun, K., J. Tordjman, K. Clement, and P.E. Scherer. 2013. Fibrosis and adipose tissue dysfunction. Cell Metabolism 18 (4): 470–477.  https://doi.org/10.1016/j.cmet.2013.06.016.CrossRefGoogle Scholar
  22. 22.
    Sun, K., J. Park, O.T. Gupta, W.L. Holland, P. Auerbach, N. Zhang, R. Goncalves Marangoni, S.M. Nicoloro, M.P. Czech, J. Varga, T. Ploug, Z. An, and P.E. Scherer. 2014. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications 5: 3485.  https://doi.org/10.1038/ncomms4485.CrossRefGoogle Scholar
  23. 23.
    Sun, K., N. Halberg, M. Khan, U.J. Magalang, and P.E. Scherer. 2013. Selective inhibition of hypoxia-inducible factor 1alpha ameliorates adipose tissue dysfunction. Molecular and Cellular Biology 33 (5): 904–917.  https://doi.org/10.1128/mcb.00951-12.CrossRefGoogle Scholar
  24. 24.
    Timper, K., J.L. Denson, S.M. Steculorum, C. Heilinger, L. Engstrom-Ruud, C.M. Wunderlich, S. Rose-John, F.T. Wunderlich, and J.C. Bruning. 2017. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Reports 19 (2): 267–280.  https://doi.org/10.1016/j.celrep.2017.03.043.CrossRefGoogle Scholar
  25. 25.
    Moreno-Indias, I., and F.J. Tinahones. 2015. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. Journal Diabetes Research 2015: 970375.  https://doi.org/10.1155/2015/970375.CrossRefGoogle Scholar
  26. 26.
    Yang, Y., D. Ju, M. Zhang, and G. Yang. 2008. Interleukin-6 stimulates lipolysis in porcine adipocytes. Endocrine 33 (3): 261–269.  https://doi.org/10.1007/s12020-008-9085-7.
  27. 27.
    Petersen, E.W., A.L. Carey, M. Sacchetti, G.R. Steinberg, S.L. Macaulay, M.A. Febbraio, and B.K. Pedersen. 2005. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. American Journal of Physiology. Endocrinology and Metabolism 288 (1): E155–E162.  https://doi.org/10.1152/ajpendo.00257.2004.CrossRefGoogle Scholar
  28. 28.
    Petruzzelli, M., M. Schweiger, R. Schreiber, R. Campos-Olivas, M. Tsoli, J. Allen, M. Swarbrick, S. Rose-John, M. Rincon, G. Robertson, R. Zechner, and E.F. Wagner. 2014. A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metabolism 20 (3): 433–447.  https://doi.org/10.1016/j.cmet.2014.06.011. CrossRefGoogle Scholar
  29. 29.
    Morelli, M., M. Gaggini, G. Daniele, P. Marraccini, R. Sicari, and A. Gastaldelli. 2013. Ectopic fat: the true culprit linking obesity and cardiovascular disease? Thrombosis and Haemostasis 110 (4): 651–660.  https://doi.org/10.1160/th13-04-0285.CrossRefGoogle Scholar
  30. 30.
    Gaggini, M., C. Saponaro, and A. Gastaldelli. 2015. Not all fats are created equal: adipose vs. ectopic fat, implication in cardiometabolic diseases. Horm Mol Biol Clin Investig 22 (1): 7–18.  https://doi.org/10.1515/hmbci-2015-0006.Google Scholar
  31. 31.
    Abdullahi, A., and M.G. Jeschke. 2016. White Adipose Tissue Browning: A Double-edged Sword. Trends in Endocrinology and Metabolism 27 (8): 542–552.  https://doi.org/10.1016/j.tem.2016.06.006.CrossRefGoogle Scholar
  32. 32.
    Wueest, S., F. Item, F.C. Lucchini, T.D. Challa, W. Muller, M. Bluher, and D. Konrad. 2016. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance. Diabetes 65 (1): 140–148.  https://doi.org/10.2337/db15-0941. Google Scholar
  33. 33.
    Perry, R.J., J.G. Camporez, R. Kursawe, P.M. Titchenell, D. Zhang, C.J. Perry, M.J. Jurczak, et al. 2015. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160 (4): 745–758.  https://doi.org/10.1016/j.cell.2015.01.012. CrossRefGoogle Scholar
  34. 34.
    Wueest, S., C.I. Laesser, M. Boni-Schnetzler, F. Item, F.C. Lucchini, M. Borsigova, W. Muller, M.Y. Donath, and D. Konrad. 2018. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion. Diabetes 67 (1): 36–45.  https://doi.org/10.2337/db17-0637.CrossRefGoogle Scholar
  35. 35.
    Wueest, S., and D. Konrad. 2018. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte 7 (3): 226–228.  https://doi.org/10.1080/21623945.2018.1493901.CrossRefGoogle Scholar
  36. 36.
    Akiyama, Y., N. Kajimura, J. Matsuzaki, Y. Kikuchi, N. Imai, M. Tanigawa, and K. Yamaguchi. 1997. In vivo effect of recombinant human leukemia inhibitory factor in primates. Japanese Journal of Cancer Research 88 (6): 578–583.CrossRefGoogle Scholar
  37. 37.
    Nicola, N.A., and J.J. Babon. 2015. Leukemia inhibitory factor (LIF). Cytokine & Growth Factor Reviews 26 (5): 533–544.  https://doi.org/10.1016/j.cytogfr.2015.07.001.CrossRefGoogle Scholar
  38. 38.
    Aubert, J., S. Dessolin, N. Belmonte, M. Li, F.R. McKenzie, L. Staccini, P. Villageois, B. Barhanin, A. Vernallis, A.G. Smith, G. Ailhaud, and C. Dani. 1999. Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. The Journal of Biological Chemistry 274 (35): 24965–24972.CrossRefGoogle Scholar
  39. 39.
    Gimble, J.M., F. Wanker, C.S. Wang, H. Bass, X. Wu, K. Kelly, G.D. Yancopoulos, and M.R. Hill. 1994. Regulation of bone marrow stromal cell differentiation by cytokines whose receptors share the gp130 protein. Journal of Cellular Biochemistry 54 (1): 122–133.  https://doi.org/10.1002/jcb.240540113.CrossRefGoogle Scholar
  40. 40.
    Hogan, J.C., and J.M. Stephens. 2005. Effects of leukemia inhibitory factor on 3T3-L1 adipocytes. The Journal of Endocrinology 185 (3): 485–496.  https://doi.org/10.1677/joe.1.05980.
  41. 41.
    White, U.A., W.C. Stewart, R.L. Mynatt, and J.M. Stephens. 2008. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes. The Journal of Biological Chemistry 283 (33): 22505–22512.  https://doi.org/10.1074/jbc.M710462200.CrossRefGoogle Scholar
  42. 42.
    Mori, M., K. Yamaguchi, and K. Abe. 1989. Purification of a lipoprotein lipase-inhibiting protein produced by a melanoma cell line associated with cancer cachexia. Biochemical and Biophysical Research Communications 160 (3): 1085–1092.CrossRefGoogle Scholar
  43. 43.
    Metcalf, D., N.A. Nicola, and D.P. Gearing. 1990. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76 (1): 50–56.Google Scholar
  44. 44.
    Marshall, M.K., W. Doerrler, K.R. Feingold, and C. Grunfeld. 1994. Leukemia inhibitory factor induces changes in lipid metabolism in cultured adipocytes. Endocrinology 135 (1): 141–147.  https://doi.org/10.1210/endo.135.1.8013346.
  45. 45.
    Arora, G.K., A. Gupta, S. Narayanan, T. Guo, P. Iyengar, and R.E. Infante. 2018. Cachexia-associated adipose loss induced by tumor-secreted leukemia inhibitory factor is counterbalanced by decreased leptin. JCI Insight 3 (14).  https://doi.org/10.1172/jci.insight.121221.
  46. 46.
    Beretta, E., H. Dhillon, P.S. Kalra, and S.P. Kalra. 2002. Central LIF gene therapy suppresses food intake, body weight, serum leptin and insulin for extended periods. Peptides 23 (5): 975–984.CrossRefGoogle Scholar
  47. 47.
    Grossberg, A.J., J.M. Scarlett, X. Zhu, D.D. Bowe, A.K. Batra, T.P. Braun, and D.L. Marks. 2010. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology 151 (2): 606–616.  https://doi.org/10.1210/en.2009-1135.CrossRefGoogle Scholar
  48. 48.
    Lee, S., J. Lee, G.M. Kang, and M.S. Kim. 2018. Leptin directly regulate intrinsic neuronal excitability in hypothalamic POMC neurons but not in AgRP neurons in food restricted mice. Neuroscience Letters 681: 105–109.  https://doi.org/10.1016/j.neulet.2018.05.041.CrossRefGoogle Scholar
  49. 49.
    Miller, R.G., J.H. Petajan, W.W. Bryan, C. Armon, R.J. Barohn, J.C. Goodpasture, R.J. Hoagland, G.J. Parry, M.A. Ross, and S.C. Stromatt. 1996. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis rhCNTF ALS Study Group. Ann Neurol 39 (2): 256–260.  https://doi.org/10.1002/ana.410390215.
  50. 50.
    A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. 1996. Neurology 46 (5): 1244–1249.CrossRefGoogle Scholar
  51. 51.
    Bluher, S., S. Moschos, J. Bullen Jr., E. Kokkotou, E. Maratos-Flier, S.J. Wiegand, M.W. Sleeman, and C.S. Mantzoros. 2004. Ciliary neurotrophic factorAx15 alters energy homeostasis, decreases body weight, and improves metabolic control in diet-induced obese and UCP1-DTA mice. Diabetes 53 (11): 2787–2796.CrossRefGoogle Scholar
  52. 52.
    Ott, V., M. Fasshauer, A. Dalski, H.H. Klein, and J. Klein. 2002. Direct effects of ciliary neurotrophic factor on brown adipocytes: evidence for a role in peripheral regulation of energy homeostasis. The Journal of Endocrinology 173 (2): R1–R8.CrossRefGoogle Scholar
  53. 53.
    Liu, Q.S., M. Gao, S.Y. Zhu, S.J. Li, L. Zhang, Q.J. Wang, and G.H. Du. 2007. The novel mechanism of recombinant human ciliary neurotrophic factor on the anti-diabetes activity. Basic & Clinical Pharmacology & Toxicology 101 (2): 78–84.  https://doi.org/10.1111/j.1742-7843.2007.00092.x.CrossRefGoogle Scholar
  54. 54.
    Watt, M.J., A. Hevener, G.I. Lancaster, and M.A. Febbraio. 2006. Ciliary neurotrophic factor prevents acute lipid-induced insulin resistance by attenuating ceramide accumulation and phosphorylation of c-Jun N-terminal kinase in peripheral tissues. Endocrinology 147 (5): 2077–2085.  https://doi.org/10.1210/en.2005-1074.CrossRefGoogle Scholar
  55. 55.
    Watt, M.J., N. Dzamko, W.G. Thomas, S. Rose-John, M. Ernst, D. Carling, B.E. Kemp, M.A. Febbraio, and G.R. Steinberg. 2006. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine 12 (5): 541–548.  https://doi.org/10.1038/nm1383.CrossRefGoogle Scholar
  56. 56.
    Duff, E., C.L. Li, D.L. Hartzell, Y.H. Choi, M.A. Della-Fera, and C.A. Baile. 2004. Ciliary neurotrophic factor injected icv induces adipose tissue apoptosis in rats. Apoptosis 9 (5): 629–634.  https://doi.org/10.1023/B:APPT.0000038042.31683.7b.
  57. 57.
    Kokoeva, M.V., H. Yin, and J.S. Flier. 2005. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310 (5748): 679–683.  https://doi.org/10.1126/science.1115360. CrossRefGoogle Scholar
  58. 58.
    Jin, H., R. Yang, G.A. Keller, A. Ryan, A. Ko, D. Finkle, T.A. Swanson, W. Li, D. Pennica, W.I. Wood, and N.F. Paoni. 1996. In vivo effects of cardiotrophin-1. Cytokine 8 (12): 920–926.  https://doi.org/10.1006/cyto.1996.0123. CrossRefGoogle Scholar
  59. 59.
    Zvonic, S., J.C. Hogan, P. Arbour-Reily, R.L. Mynatt, and J.M. Stephens. 2004. Effects of cardiotrophin on adipocytes. The Journal of Biological Chemistry 279 (46): 47572–47579.  https://doi.org/10.1074/jbc.M403998200.CrossRefGoogle Scholar
  60. 60.
    Moreno-Aliaga, M.J., N. Perez-Echarri, B. Marcos-Gomez, E. Larequi, F.J. Gil-Bea, B. Viollet, I. Gimenez, J.A. Martinez, J. Prieto, and M. Bustos. 2011. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metabolism 14 (2): 242–253.  https://doi.org/10.1016/j.cmet.2011.05.013.CrossRefGoogle Scholar
  61. 61.
    Lopez-Yoldi, M., M. Fernandez-Galilea, L.M. Laiglesia, E. Larequi, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2014. Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. Journal of Lipid Research 55 (12): 2634–2643.  https://doi.org/10.1194/jlr.M055335.CrossRefGoogle Scholar
  62. 62.
    Lopez-Yoldi, M., B. Marcos-Gomez, M.A. Romero-Lozano, N. Sainz, J. Prieto, J.A. Martinez, M. Bustos, and M.J. Moreno-Aliaga. 2017. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology 232 (9): 2469–2477.  https://doi.org/10.1002/jcp.25590.CrossRefGoogle Scholar
  63. 63.
    Zhu, S., F. Sun, W. Li, Y. Cao, C. Wang, Y. Wang, D. Liang, R. Zhang, S. Zhang, H. Wang, and F. Cao. 2011. Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes. Molecular and Cellular Biochemistry 353 (1–2): 305–313.  https://doi.org/10.1007/s11010-011-0799-0.CrossRefGoogle Scholar
  64. 64.
    Vespasiani-Gentilucci, U., A. De Vincentis, J. Argemi, G. Galati, E. Anso, G. Patti, and A. Picardi. 2013. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Archives of Medical Science 9 (4): 635–639.  https://doi.org/10.5114/aoms.2013.37272.CrossRefGoogle Scholar
  65. 65.
    Hung, H.C., F.H. Lu, H.Y. Ou, H.T. Wu, J.S. Wu, Y.C. Yang, and C.J. Chang. 2013. Increased cardiotrophin-1 in subjects with impaired glucose tolerance and newly diagnosed diabetes. International Journal of Cardiology 169 (3): e33–e34.  https://doi.org/10.1016/j.ijcard.2013.08.112.CrossRefGoogle Scholar
  66. 66.
    Hung, H.C., F.H. Lu, H.T. Wu, H.Y. Ou, Y.C. Yang, J.S. Wu, and C.J. Chang. 2015. Cardiotrophin-1 is inversely associated with obesity in non-diabetic individuals. Scientific Reports 5: 17438.  https://doi.org/10.1038/srep17438.CrossRefGoogle Scholar
  67. 67.
    Natal, C., M.A. Fortuno, P. Restituto, A. Bazan, I. Colina, J. Diez, and N. Varo. 2008. Cardiotrophin-1 is expressed in adipose tissue and upregulated in the metabolic syndrome. American Journal of Physiology. Endocrinology and Metabolism 294 (1): E52–E60.  https://doi.org/10.1152/ajpendo.00506.2007.CrossRefGoogle Scholar
  68. 68.
    Rendo-Urteaga, T., S. Garcia-Calzon, E. Martinez-Anso, M. Chueca, M. Oyarzabal, M.C. Azcona-Sanjulian, M. Bustos, M.J. Moreno-Aliaga, J.A. Martinez, and A. Marti. 2013. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 62 (10): 1429–1436.  https://doi.org/10.1016/j.metabol.2013.05.011.CrossRefGoogle Scholar
  69. 69.
    Rose, T.M., and A.G. Bruce. 1991. Oncostatin M is a member of a cytokine family that includes leukemia-inhibitory factor, granulocyte colony-stimulating factor, and interleukin 6. Proceedings of the National Academy of Sciences of the United States of America 88 (19): 8641–8645.CrossRefGoogle Scholar
  70. 70.
    Rose, T.M., M.J. Lagrou, I. Fransson, B. Werelius, O. Delattre, G. Thomas, P.J. de Jong, G.J. Todaro, and J.P. Dumanski. 1993. The genes for oncostatin M (OSM) and leukemia inhibitory factor (LIF) are tightly linked on human chromosome 22. Genomics 17 (1): 136–140.  https://doi.org/10.1006/geno.1993.1294.CrossRefGoogle Scholar
  71. 71.
    Tanaka, M., T. Hara, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and A. Miyajima. 1999. Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor beta subunit. Blood 93 (3): 804–815.Google Scholar
  72. 72.
    Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 99 (2): E217–E225.  https://doi.org/10.1210/jc.2013-3555.CrossRefGoogle Scholar
  73. 73.
    Komori, T., M. Tanaka, E. Senba, A. Miyajima, and Y. Morikawa. 2013. Lack of oncostatin M receptor beta leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. The Journal of Biological Chemistry 288 (30): 21861–21875.  https://doi.org/10.1074/jbc.M113.461905.CrossRefGoogle Scholar
  74. 74.
    Komori, T., M. Tanaka, E. Senba, A. Miyajima, and Y. Morikawa. 2014. Deficiency of oncostatin M receptor beta (OSMRbeta) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice. The Journal of Biological Chemistry 289 (20): 13821–13837.  https://doi.org/10.1074/jbc.M113.542399.CrossRefGoogle Scholar
  75. 75.
    Komori, T., M. Tanaka, H. Furuta, T. Akamizu, A. Miyajima, and Y. Morikawa. 2015. Oncostatin M is a potential agent for the treatment of obesity and related metabolic disorders: a study in mice. Diabetologia 58 (8): 1868–1876.  https://doi.org/10.1007/s00125-015-3613-9.CrossRefGoogle Scholar
  76. 76.
    Hattori, K., T. Sumi, T. Yasui, M. Morimura, H. Nobeyama, E. Okamoto, M. Noriyuki, K. Honda, H. Kiyama, and O. Ishiko. 2004. VEGF mRNA in adipocytes increase with rebound weight-gain after diet-restriction. International Journal of Molecular Medicine 13 (3): 395–399.Google Scholar
  77. 77.
    Rega, G., C. Kaun, S. Demyanets, S. Pfaffenberger, K. Rychli, P.J. Hohensinner, S.P. Kastl, W.S. Speidl, T.W. Weiss, J.M. Breuss, A. Furnkranz, P. Uhrin, J. Zaujec, V. Zilberfarb, M. Frey, R. Roehle, G. Maurer, K. Huber, and J. Wojta. 2007. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 27 (7): 1587–1595.  https://doi.org/10.1161/atvbaha.107.143081.
  78. 78.
    Miyaoka, Y., M. Tanaka, T. Naiki, and A. Miyajima. 2006. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. The Journal of Biological Chemistry 281 (49): 37913–37920.  https://doi.org/10.1074/jbc.M606089200.
  79. 79.
    Heinrich, P.C., I. Behrmann, S. Haan, H.M. Hermanns, G. Muller-Newen, and F. Schaper. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochemical Journal 374 (Pt 1): 1–20.  https://doi.org/10.1042/bj20030407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dufang Ma
    • 1
  • Yong Wang
    • 1
  • Guofeng Zhou
    • 2
  • Yongcheng Wang
    • 2
  • Xiao Li
    • 1
    Email author
  1. 1.Cardiology DepartmentAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
  2. 2.First Clinical Medical CollegeShandong University of Traditional Chinese MedicineJinanChina

Personalised recommendations