Attenuation of Sepsis-Induced Cardiomyopathy by Regulation of MicroRNA-23b Is Mediated Through Targeting of MyD88-Mediated NF-κB Activation
- 7 Downloads
Abstract
Myocardial cell injury or cardiomyopathy is associated with excessive inflammatory response and apoptosis of cardiac myocytes during sepsis. MicroRNA-23b (miR-23b) is a multifunctional miRNA that is considered to regulate immunosuppression in sepsis. The aim of this study was to examine the effect of miR-23b on cardiomyopathy induced by sepsis and to explore the potential mechanism involved. Sprague-Dawley rats were subjected to cecal ligation and puncture (CLP), and the level of miR-23b at different time points was measured by quantitative real-time polymerase chain reaction (qPCR). Then, we overexpressed miR-23b in vivo and in vitro. The rats were subjected to CLP 7 days after transfection. Cardiac function, inflammatory response, and heart tissues were examined 3 days thereafter. In an in vitro experiment, H9C2 cardiomyoblasts were stimulated with lipopolysaccharide (LPS) after transfection of miR-23b, following which apoptosis and the level of NF-κB were analyzed. The expression of miR-23b was upregulated during polymicrobial sepsis, and transfection of miR-23b lentivirus improved the outcome of sepsis-induced cardiomyopathy by attenuating inflammatory responses and protecting against histopathological damage. In in vitro experiments, elevated miR-23b inhibited excessive apoptosis of cardiomyocytes, which may be because activation of the NF-κB signaling pathway was inhibited by the decreased levels of TRAF6 and IKKβ. Therefore, miR-23b improved sepsis-induced cardiomyopathy by attenuating the inflammatory response, suppressing apoptosis, and preventing NF-κB activation via targeted inhibition of TRAF6 and IκκB. These results indicated that miR-23b may represent a novel therapeutic approach for clinical treatment of sepsis-induced cardiomyopathy.
KEY WORDS
microRNA-23b sepsis-induced cardiomyopathy inflammatory response NF-κB TRAF6 IκκBAbbreviations
- BNP
Brain natriuretic peptide
- CK-MB
Creatine kinase-MB
- CLP
Cecal ligation and puncture
- CO
Cardiac output
- EF
Ejection fraction
- ELISA
Enzyme-linked immunosorbent assay
- EMSA
Electrophoretic mobility shift assay
- ICAM-1
Intercellular cell adhesion molecule 1
- LPS
Lipopolysaccharide
- MIF
Migration inhibitory factor
- miR-23b
MicroRNA-23b
- NF-κB
Nuclear factor kappaB
- qPCR
Quantitative real-time polymerase chain reaction
- SIC
Sepsis-induced cardiomyopathy
- TLR
Toll-like receptor
- VCAM-1
Vascular cell adhesion molecule 1
Notes
Authors’ Contributions
CC performed experiments, analyzed data, prepared figures, and wrote the manuscript. YZ, LJW, YFC, and STS performed experiments and analyzed data. CFY performed the histological examination of the heart tissues. HJ designed experiments, analyzed data, prepared figures, and wrote the manuscript. All authors read and approved the final manuscript.
Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 81871593 to YFC), Theory E Emergency Medical Research Fund of China (Grant No. R2015026 to CC), and Tianjin Medical University General Hospital Fund of China (Grant No. ZYYFY2015010 to CC, ZYYFY2016026 to YZ).
Compliance with Ethical Standards
Competing Interests
The authors declare that they have no conflicts of interest.
Ethics Approval and Consent to Participate
All experimental manipulations were undertaken in accordance with the Guide for the Care and Use of Medical Laboratory Animals (Ministry of Health, P.R. China, 1998), with the approval of the Scientific Investigation Board, Tianjin Medical University General Hospital, Tianjin, China.
Supplementary material
References
- 1.Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.CrossRefGoogle Scholar
- 2.Gomez, E., M. Vercauteren, B. Kurtz, A. Ouvrard-Pascaud, P. Mulder, J.P. Henry, M. Besnier, A. Waget, R. Hooft Van Huijsduijnen, M.L. Tremblay, et al. 2012. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. Journal of Molecular and Cellular. 52 (6): 1257–1264.Google Scholar
- 3.Charpentier, J., C.E. Luyt, Y. Fulla, C. Vinsonneau, A. Cariou, S. Grabar, J.F. Dhainaut, J.P. Mira, and J.D. Chiche. 2004. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine 32 (3): 660–665.CrossRefGoogle Scholar
- 4.Gille-Johnson, P., C. Smedman, L. Gudmundsdotter, A. Somell, K. Nihlmark, S. Paulie, J. Andersson, and B. Gårdlund. 2012. Circulating monocytes are not the major source of plasma cytokines in patients with sepsis. Shock 38 (6): 577–583.CrossRefGoogle Scholar
- 5.Vieillard-Baron, A., V. Caille, C. Charron, G. Belliard, B. Page, and F. Jardin. 2008. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine 36 (6): 1701–1706.CrossRefGoogle Scholar
- 6.Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. International Forum of Acute Care Trialists: Assessment of global incidence and mortality of hospital-treated Sepsis. Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine 193 (3): 259–272.CrossRefGoogle Scholar
- 7.Micek, S.T., C. McEvoy, M. McKenzie, N. Hampton, J.A. Doherty, and M.H. Kollef. 2013. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Critical Care 17 (5): R246.CrossRefGoogle Scholar
- 8.Antonucci, E., E. Fiaccadori, K. Donadello, F.S. Taccone, F. Franchi, and S. Scolletta. 2014. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. Journal of Critical Care 29 (4): 500–511.CrossRefGoogle Scholar
- 9.Liu, Y.C., M.M. Yu, S.T. Shou, and Y.F. Chai. 2017. Sepsis-induced cardiomyopathy: mechanisms and treatments. Frontiers in Immunology 8 (1021).Google Scholar
- 10.Tsolaki, V., D. Makris, K. Mantzarlis, and E. Zakynthinos. 2017. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxidative Medicine and Cellular Longevity 2017: 7393525.CrossRefGoogle Scholar
- 11.Suffredini, A.F., R.E. Fromm, M.M. Parker, M. Brenner, J.A. Kovacs, R.A. Wesley, and J.E. Parrillo. 1989. The cardiovascular response of normal humans to the administration of endotoxin. The New England Journal of Medicine 321 (5): 280–287.CrossRefGoogle Scholar
- 12.Mann, M., A. Mehta, J.L. Zhao, K. Lee, G.K. Marinov, Y. Garcia-Flores, and D. Baltimore. 2017. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications 8 (1): 851.CrossRefGoogle Scholar
- 13.Cao, C., C. Yin, S. Shou, J. Wang, L. Yu, X. Li, and Y. Chai. 2018. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-κB pathway activation and reducing inflammatory mediators. Shock 50 (5): 595–605.CrossRefGoogle Scholar
- 14.Zou, L., Y. Feng, Y.J. Chen, R. Si, S. Shen, Q. Zhou, F. Ichinose, M. Scherrer-Crosbie, and W. Chao. 2010. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 38 (5): 1335–1342.CrossRefGoogle Scholar
- 15.Gao, M., T. Ha, X. Zhang, L. Liu, X. Wang, J. Kelley, K. Singh, R. Kao, X. Gao, D. Williams, et al. 2010. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Critical Care Medicine 40 (8): 2390–2399.CrossRefGoogle Scholar
- 16.Gao, M., T. Ha, X. Zhang, X. Wang, L. Liu, J. Kalbfleisch, K. Singh, D. Williams, and C. Li. 2013. The Toll-like receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. The Journal of Infectious Diseases 207 (9): 1471–1479.CrossRefGoogle Scholar
- 17.Melton, C., R.L. Judson, and R. Blelloch. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463 (7281): 621–626.CrossRefGoogle Scholar
- 18.Dvinge, H., A. Git, S. Gräf, M. Salmon-Divon, C. Curtis, A. Sottoriva, Y. Zhao, M. Hirst, J. Armisen, E.A. Miska, S.F. Chin, E. Provenzano, G. Turashvili, A. Green, I. Ellis, S. Aparicio, and C. Caldas. 2013. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497 (7449): 378–382.CrossRefGoogle Scholar
- 19.Amaral, A.E.D., M.P. Rode, J. Cisilotto, T.E.D. Silva, J. Fischer, C. Matiollo, E.C. Morais Rateke, J.L. Narciso-Schiavon, L.L. Schiavon, and T.B. Creczynski-Pasa. 2018. MicroRNA profiles in serum samples from patients with stable cirrhosis and miRNA-21 as a predictor of transplant-free survival. Pharmacological Research 134: 179–192.CrossRefGoogle Scholar
- 20.Tacke, F., C. Roderburg, F. Benz, D.V. Cardenas, M. Luedde, H.J. Hippe, N. Frey, M. Vucur, J. Gautheron, A. Koch, C. Trautwein, and T. Luedde. 2014. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Critical Care Medicine 42 (5): 1096–1104.CrossRefGoogle Scholar
- 21.Ge, C., J. Liu, and S. Dong. 2018. miRNA-214 protects sepsis-induced myocardial injury. Shock 50 (1): 112–118.CrossRefGoogle Scholar
- 22.Ma, H., X. Wang, T. Ha, M. Gao, L. Liu, R. Wang, K. Yu, J.H. Kalbfleisch, R.L. Kao, D.L. Williams, and C. Li. 2016. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κB activation and p53-mediated apoptotic signaling. The Journal of Infectious Diseases 214 (11): 1773–1783.CrossRefGoogle Scholar
- 23.Wang, H., Y. Bei, S. Shen, P. Huang, J. Shi, J. Zhang, Q. Sun, Y. Chen, Y. Yang, T. Xu, X. Kong, and J. Xiao. 2016. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. Journal of Molecular and Cellular Cardiology 94: 43–53.CrossRefGoogle Scholar
- 24.Grieco, F.A., G. Sebastiani, J. Juan-Mateu, O. Villate, L. Marroqui, L. Ladrière, K. Tugay, R. Regazzi, M. Bugliani, P. Marchetti, F. Dotta, and D.L. Eizirik. 2017. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. Diabetes 66 (1): 100–112.CrossRefGoogle Scholar
- 25.Hu, R., and R.M. O’Connell. 2012. MiR-23b is a safeguard against autoimmunity. Nature Medicine 18 (7): 1009–1010, 2017.CrossRefGoogle Scholar
- 26.Zheng, J., H.Y. Jiang, J. Li, H.C. Tang, X.M. Zhang, X.R. Wang, J.T. Du, H.B. Li, and G. Xu. 2012. MicroRNA-23b promotes tolerogenic properties of dendritic cells in vitro through inhibiting Notch1/NF-κB signalling pathways. Allergy 67 (3): 362–370.CrossRefGoogle Scholar
- 27.Zhu, S., W. Pan, X. Song, Y. Liu, X. Shao, Y. Tang, D. Liang, D. He, H. Wang, W. Liu, Y. Shi, J.B. Harley, N. Shen, and Y. Qian. 2012. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nature Medicine 18 (7): 1077–1086.CrossRefGoogle Scholar
- 28.Wu, M., J.T. Gu, B. Yi, Z.Z. Tang, and G.C. Tao. 2015. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Experimental and Therapeutic Medicine 9 (4): 1125–1132.CrossRefGoogle Scholar
- 29.Hoyt, C.C., S.M. Richardson-Burns, R.J. Goody, B.A. Robinson, R.L. Debiasi, and K.L. Tyler. 2005. Nonstructural protein sigma1s is a determinant of reovirus virulence and influences the kinetics and severity of apoptosis induction in the heart and central nervous system. Journal of Virology 79 (5): 2743–2753.CrossRefGoogle Scholar
- 30.Cao, C., C. Yin, Y. Chai, H. Jin, L. Wang, and S. Shou. 2018. Ulinastatin mediates suppression of regulatory T cells through TLR4/NF-κB signaling pathway in murine sepsis. International Immunopharmacology 64: 411–423.CrossRefGoogle Scholar
- 31.Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43 (1): 3–15.CrossRefGoogle Scholar
- 32.Zhang, H., H.Y. Wang, R. Bassel-Duby, D.L. Maass, W.E. Johnston, J.W. Horton, and W. Tao. 2007. Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. American Journal of Physiology. Heart and Circulatory Physiology 292 (5): H2408–H2416.CrossRefGoogle Scholar
- 33.Zhang, G., and S. Ghosh. 2001. Toll-like receptor-mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. The Journal of Clinical Investigation 107 (1): 13–19.CrossRefGoogle Scholar
- 34.Sheehan, M., H.R. Wong, P.W. Hake, and B. Zingarelli. 2003. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Critical Care Medicine 31 (9): 2263–2270.CrossRefGoogle Scholar
- 35.Zheng, Z., H. Ma, X. Zhang, F. Tu, X. Wang, T. Ha, M. Fan, L. Liu, J. Xu, K. Yu, R. Wang, J. Kalbfleisch, R. Kao, D. Williams, and C. Li. 2017. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. The Journal of Infectious Diseases 215 (9): 1396–1406.CrossRefGoogle Scholar
- 36.Brudecki, L., D.A. Ferguson, D. Yin, G.D. Lesage, C.E. McCall, and M. El Gazzar. 2012. Hematopoietic stem-progenitor cells restore immunoreactivity and improve survival in late sepsis. Infection and Immunity 80 (2): 602–611.CrossRefGoogle Scholar
- 37.Yoon, S.J., S.J. Kim, and S.M. Lee. 2017. Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. The Journal of Infectious Diseases 215 (10): 1608–1618.CrossRefGoogle Scholar
- 38.Zhang, H., Y. Caudle, A. Shaikh, B. Yao, and D. Yin. 2018. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomedicine & Pharmacotherapy 103: 869–878.CrossRefGoogle Scholar
- 39.Court, O., A. Kumar, J.E. Parrillo, and A. Kumar. 2002. Clinical review: Myocardial depression in sepsis and septic shock. Critical Care 6 (6): 500–508.CrossRefGoogle Scholar
- 40.Chagnon, F., C.N. Metz, R. Bucala, and O. Lesur. 2005. Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization. Circulation Research 96 (10): 1095–1102.CrossRefGoogle Scholar
- 41.Alves-Filho, J.C., A. de Freitas, F. Spiller, F.O. Souto, and C.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.CrossRefGoogle Scholar
- 42.Cavaillon, J.M., and M. Adib-Conquy. 2005. Monocytes/macrophages and sepsis. Critical Care Medicine 33: S506–S509.CrossRefGoogle Scholar
- 43.O’Neill, L.A., F.J. Sheedy, and C.E. McCoy. 2011. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nature Reviews. Immunology 11 (3): 163–175.CrossRefGoogle Scholar
- 44.Williams, D.L., T. Ha, C. Li, J.H. Kalbfleisch, J. Schweitzer, W. Vogt, and I.W. Browder. 2003. Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Critical Care Medicine 31 (6): 1808–1818.CrossRefGoogle Scholar
- 45.Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195 (2): 672–682.CrossRefGoogle Scholar
- 46.Ha, T., C. Lu, L. Liu, F. Hua, Y. Hu, J. Kelley, K. Singh, R.L. Kao, J. Kalbfleisch, D.L. Williams, X. Gao, and C. Li. 2010. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. American Journal of Physiology. Heart and Circulatory Physiology 298 (3): H984–H991.CrossRefGoogle Scholar
- 47.Medzhitov, R., P. Preston-Hurlburt, and C.A.J. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640): 394–397.CrossRefGoogle Scholar
- 48.Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory and Critical Care Medicine 163 (1): 218–225.CrossRefGoogle Scholar