Advertisement

B Cells Increase Myocardial Inflammation by Suppressing M2 Macrophage Polarization in Coxsackie Virus B3-Induced Acute Myocarditis

  • Yong Li
  • Yanlan Huang
  • Weifeng WuEmail author
  • Bin Wei
  • Lin Qin
ORIGINAL ARTICLE
  • 79 Downloads

Abstract

The role of B cells in viral myocarditis (VMC) remains controversial. In order to establish a role and mechanism of action for B cells in acute VMC, we established an acute VMC mouse model by intraperitoneal injection of Coxsackie virus group B type 3 (CVB3). At day 7, mice were analyzed using myocardial histopathology, and the presence of M2 macrophages in spleen and heart. Mice were divided into four groups, all having a C57BL/6 background: control group; wild-type (WT) VMC; mMt/mMt (−/−) VMC (BKO), and BKO + B cell VMC. A role for B cells was demonstrated by a significant reduction in myocardial pathological score and an increase in the frequency of M2 macrophages in the BKO group, when compared to the WT group. Once BKO mice underwent B cell reconstitution with isolated WT B cells, the myocardial pathological score was increased significantly, while the frequency of M2 macrophages decrease. Our findings demonstrate that B cells increase myocardial inflammation by suppressing M2 polarization in acute VMC in vivo.

KEY WORDS

B cells macrophage polarization viral myocarditis 

Notes

Funding Information

This study was funded by the National Natural Science Foundation of China (81670345).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Rose, N.R. 2016. Viral myocarditis. Current Opinion in Rheumatology 28 (4): 383–389.CrossRefGoogle Scholar
  2. 2.
    Trachtenberg, B.H., and J.M. Hare. 2017. Inflammatory cardiomyopathic syndromes. Circulation Research 121 (7): 803–818.CrossRefGoogle Scholar
  3. 3.
    Fung, G., H. Luo, Y. Qiu, D. Yang, and B. McManus. 2016. Myocarditis. Circulation Research 118 (3): 496–514.CrossRefGoogle Scholar
  4. 4.
    Taqueti, V.R., R.N. Mitchell, and A.H. Lichtman. 2006. Protecting the pump: controlling myocardial inflammatory responses. Annual Review of Physiology 68: 67–95.CrossRefGoogle Scholar
  5. 5.
    Yue, Y., J. Gui, W. Xu, and S. Xiong. 2011. Gene therapy with CCL2 (MCP-1) mutant protects CVB3-induced myocarditis by compromising Th1 polarization. Molecular Immunology 48 (4): 706–713.CrossRefGoogle Scholar
  6. 6.
    Abston, E.D., et al. 2012. Th2 regulation of viral myocarditis in mice: different roles for TLR3 versus TRIF in progression to chronic disease. Clinical & Developmental Immunology 2012: 129486.CrossRefGoogle Scholar
  7. 7.
    Qing, K., et al. 2011. Distinct different expression of Th17 and Th9 cells in coxsackie virus B3-induced mice viral myocarditis. Virology Journal 8: 267.CrossRefGoogle Scholar
  8. 8.
    Kong, Q., et al. 2012. Increased expressions of IL-22 and Th22 cells in the coxsackievirus B3-induced mice acute viral myocarditis. Virology Journal 9: 232.CrossRefGoogle Scholar
  9. 9.
    Takada, H., C. Kishimoto, and Y. Hiraoka. 1995. Therapy with immunoglobulin suppresses myocarditis in a murine coxsackievirus B3 model. Antiviral and anti-inflammatory effects. Circulation 92 (6): 1604–1611.CrossRefGoogle Scholar
  10. 10.
    Li, R., et al. 2015. Cytokine-defined B cell responses as therapeutic targets in multiple sclerosis. Frontiers in Immunology 6: 626.CrossRefGoogle Scholar
  11. 11.
    Zouggari, Yasmine, Hafid Ait-Oufella, Philippe Bonnin, Tabassome Simon, Andrew P. Sage, Coralie Guérin, José Vilar, Giuseppina Caligiuri, Dimitrios Tsiantoulas, Ludivine Laurans, Edouard Dumeau, Salma Kotti, Patrick Bruneval, Israel F. Charo, Christoph J. Binder, Nicolas Danchin, Alain Tedgui, Thomas F. Tedder, Jean-Sébastien Silvestre, and Ziad Mallat. 2013. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine 19: 1273–1280.CrossRefGoogle Scholar
  12. 12.
    Yanlan, H., et al. 2018. CD80 regulates Th17 cell differentiation in Coxsackie virus B3-induced acute myocarditis. Inflammation 41 (1): 232–239.CrossRefGoogle Scholar
  13. 13.
    Eriksson, U., R. Ricci, L. Hunziker, M.O. Kurrer, G.Y. Oudit, T.H. Watts, I. Sonderegger, K. Bachmaier, M. Kopf, and J.M. Penninger. 2003. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nature Medicine 9: 1484–1490.CrossRefGoogle Scholar
  14. 14.
    Rudolph, V., R.P. Andrié, T.K. Rudolph, K. Friedrichs, A. Klinke, B. Hirsch-Hoffmann, A.P. Schwoerer, D. Lau, X.M. Fu, K. Klingel, K. Sydow, M. Didié, A. Seniuk, E.C. von Leitner, K. Szoecs, J.W. Schrickel, H. Treede, U. Wenzel, T. Lewalter, G. Nickenig, W.H. Zimmermann, T. Meinertz, R.H. Böger, H. Reichenspurner, B.A. Freeman, T. Eschenhagen, H. Ehmke, S.L. Hazen, S. Willems, and S. Baldus. 2010. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nature Medicine 16: 470–474.CrossRefGoogle Scholar
  15. 15.
    Gao, X., B. Wei, Y. Deng, Y.L. Huang, and W. Wu. 2017. Increased mobilization of CD45+CD34+VLA-4+ cells in acute viral myocarditis induced by coxsackievirus B3. Cardiology 138: 238–248.CrossRefGoogle Scholar
  16. 16.
    Yu, M., S. Wen, M. Wang, W. Liang, H.H. Li, Q. Long, H.P. Guo, Y.H. Liao, and J. Yuan. 2013. TNF-α-secreting B cells contribute to myocardial fibrosis in dilated cardiomyopathy. Journal of Clinical Immunology 33 (5): 1002–1008.CrossRefGoogle Scholar
  17. 17.
    Cen, Z., Y. Guo, Q. Kong, Q. Zhou, and W. Wu. 2015. IL-10-producing B cells involved in the pathogenesis of Coxsackie virus B3-induced acute viral myocarditis. International Journal of Clinical and Experimental Pathology 8 (1): 830–835.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lund, Frances E., et al. 2010. Effector and regulatory B cells: modulators of CD4 + T cell immunity. Nature Reviews Immunology 10 (4): 236–247.CrossRefGoogle Scholar
  19. 19.
    Epelman, Slava, Peter P. Liu, and Douglas L. Mann. 2015. Role of innate and adaptive immunity in cardiac injury and repair. Nature Reviews Immunology 15 (2): 117–129.CrossRefGoogle Scholar
  20. 20.
    Warwick, C.A., et al. 2017. Culture, transfection, and immunocytochemical analysis of primary macrophages. Methods in Molecular Biology 1554: 161–173.CrossRefGoogle Scholar
  21. 21.
    Martinez, F.O., et al. 2008. Macrophage activation and polarization. Frontiers in Bioscience- Landmark 13: 453–461.CrossRefGoogle Scholar
  22. 22.
    Li, K., W. Xu, Q. Guo, Z. Jiang, P. Wang, Y. Yue, and S. Xiong. 2009. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circulation Research 105 (4): 353–364.CrossRefGoogle Scholar
  23. 23.
    Locati, M., et al. 2013. Macrophage activation and polarization as an adaptive component of innate immunity. Advances in Immunology 120: 163–184.CrossRefGoogle Scholar
  24. 24.
    Bermejo, Daniela A., et al. 2013. Trypanosoma cruzi trans-sialidase initiates an ROR-γt–AHR-independent program leading to IL-17 production by activated B cells. Nature Immunology 14 (5): 514–522.CrossRefGoogle Scholar
  25. 25.
    Ireland, S.J., et al. 2016. B cells from relapsing remitting multiple sclerosis patients support neuro-antigen-specific Th17 responses. Journal of Neuroimmunology 15 (291): 46–53.CrossRefGoogle Scholar
  26. 26.
    Wong, Siew-Cheng, Anne-Laure Puaux, Manesh Chittezhath, Irina Shalova, Tasneem S. Kajiji, Xiaojie Wang, Jean-Pierre Abastado, Kong-Peng Lam, and Subhra K. Biswas. 2010. Macrophage polarization to a unique phenotype driven by B cells. European Journal of Immunology 40: 2296–2307.CrossRefGoogle Scholar
  27. 27.
    Leuschner, Florian, Gabriel Courties, Partha Dutta, Luke J. Mortensen, Rostic Gorbatov, Brena Sena, Tatiana I. Novobrantseva, Anna Borodovsky, Kevin Fitzgerald, Victor Koteliansky, Yoshiko Iwamoto, Marina Bohlender, Soeren Meyer, Felix Lasitschka, Benjamin Meder, Hugo A. Katus, Charles Lin, Peter Libby, Filip K. Swirski, Daniel G. Anderson, Ralph Weissleder, and Matthias Nahrendorf. 2015. Silencing of CCR2 in myocarditis. European Heart Journal 36: 1478–1488.CrossRefGoogle Scholar
  28. 28.
    Hauser, S.L., E. Waubant, D.L. Arnold, T. Vollmer, J. Antel, R.J. Fox, A. Bar-Or, M. Panzara, N. Sarkar, S. Agarwal, A. Langer-Gould, C.H. Smith, and HERMES Trial Group. 2008. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. New England Journal of Medicine 358 (7): 676–688.CrossRefGoogle Scholar
  29. 29.
    Cambridge, G., H.C. Perry, L. Nogueira, G. Serre, H.M. Parsons, I. de la Torre, M.C. Dickson, M.J. Leandro, and J.C.W. Edwards. 2014. The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. Journal of Autoimmunity 50: 67–76.CrossRefGoogle Scholar
  30. 30.
    Sangle, S.R., P.M.K. Lutalo, R.J. Davies, M.A. Khamashta, and D.P. D'Cruz. 2013. B-cell depletion therapy and pregnancy outcome in severe, refractory systemic autoimmune diseases. Journal of Autoimmunity 43: 55–59.CrossRefGoogle Scholar
  31. 31.
    Fleischer, V., J. Sieber, S.J. Fleischer, A. Shock, G. Heine, C. Daridon, and T. Dörner. 2015. Epratuzumab inhibits the production of the proinflammatory cytokines IL-6 and TNF-α, but not the regulatory cytokine IL-10, by B cells from healthy donors and SLE patients. Arthritis Research & Therapy 17: 185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CardiologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningPeople’s Republic of China

Personalised recommendations