Advertisement

Inflammation

, Volume 42, Issue 2, pp 690–701 | Cite as

Alcohol Binge Reduces Systemic Leukocyte Activation and Pulmonary PMN Infiltration After Blunt Chest Trauma and Hemorrhagic Shock

  • Niklas Franz
  • Scott Dieteren
  • Kernt Köhler
  • Katharina Mörs
  • Ramona Sturm
  • Ingo Marzi
  • Mario Perl
  • Borna ReljaEmail author
  • Nils Wagner
ORIGINAL ARTICLE
  • 116 Downloads

Abstract

Blunt chest (thoracic) trauma (TxT) and hemorrhagic shock (HS)-induced local and systemic inflammation with increased neutrophil activity often result in an impaired organ function. Next to increasing the trauma risk, binge drinking causes anti-inflammatory effects due to immunomodulatory properties of alcohol (ethanol, EtOH). The impact of clinically relevant acute binge drinking scenario on local and systemic inflammatory changes, notably regarding the activity and longevity of leukocytes, has been analyzed in a combinatory trauma model of TxT + H/R. Twenty-four female Lewis rats (190–240 g) received alcohol (5 g/kg, 30%) or saline gavage. Two hours after alcohol gavage, TxT with subsequent HS (60 min) and resuscitation (TxT + H/R) were induced. Sham-operated animals underwent surgical procedures. Bronchoalveolar lavage fluid (BAL), lung tissue, and blood were harvested 2 h after resuscitation. Pulmonary infiltration with PMN, IL-6 gene expression, systemic PMN activation, neutrophil and monocyte apoptosis (caspase-3/7), and pyroptosis/inflammasome activation (caspase-1) were evaluated. Lung damage was evaluated by hematoxylin-eosin (H/E) staining and determination of the total protein content in BAL (ANOVA, p < 0.05 was significant). TxT + H/R-induced increases in IL-6, PMN infiltration and BAL-protein concentration were significantly reduced by EtOH; however, histological morphology changes after trauma remained unaltered by EtOH. TxT + H/R-induced systemic leukocyte activation (increased CD11b and CD31, reduced CD62L expression) as well as inflammasome activation in monocytes were significantly diminished by EtOH. Apoptosis was prolonged only in PMN after TxT + H/R and was further prolonged by EtOH, an effect that was observed in sham animals as a trend as well. Acute EtOH exposure inhibits the activation of circulating leukocytes after trauma compared to controls. These EtOH-driven systemic changes may be associated with reduced infiltration with PMN after trauma as well as reduced local tissue inflammation.

KEY WORDS

ethanol neutrophils trauma CD11b CD62L apoptosis longevity inflammasome 

Abbreviations

APC

Allophycocyanine

ARDS

Acute respiratory distress syndrome

ASC

Apoptosis-associated speck-like protein containing CARD

BAL

Bronchoalveolar lavage fluid

CAE

Chloroacetate esterase

CARD

Caspase activation and recruitment domain

CD

Cluster of differentiation

CT

Comparative threshold-cycle

DAMP

Damage-associated molecular pattern

DFG

Deutsche Forschungsgemeinschaft, German Research Foundation

EtOH

Ethanol

Fig.

Figure

FITC

Fluorescein isothiocyanate

g

Earth’s gravitational acceleration

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

HE

Hematoxylin-eosin

Hg

Mercury

HS

Hemorrhagic shock

IL

Interleukin

LPS

Lipopolysaccharide

MABP

Mean arterial blood pressure

MFU

Mean fluorescence units

MOF

Multiple organ failure

MODS

Multiple organ dysfunction syndrome

NaCl

Sodium chloride

NF-ĸB

Nuclear factor kappa-light-chain-enhancer of activated B cells

p

P value

PAMP

Pathogen-associated molecular pattern

PRR

Pattern recognition receptor

PMN

Polymorphonuclear leukocyte

R

Resuscitation

RNA

Ribonucleic acid

RT

Room temperature

qRT-PCR

Semi-quantitative real-time polymerase chain reaction

s.e.m.

Standard error of the mean

TxT

Blunt thoracic/chest trauma

U

Unit

Notes

Acknowledgements

We thank Katrin Jurida, Kerstin Kontradowitz, and Alexander Schaible for outstanding technical assistance.

Author Contributions

BR and MP designed the study and obtained the grant. NF, NW, and SD performed the experiments. NF, BR, and NW performed the statistical analysis and wrote the manuscript. KK evaluated the histology. KM, RS, and IM made important intellectual contributions to the study and revised the manuscript.

Funding

This study was supported by grants from DFG RE 3304/5-1 and DFG PE 908/3-1.

Compliance with Ethical Standards

Ethical Approval

Animal protocols were approved by the Veterinary Department of the Regional Council in Darmstadt, Germany.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sakran, J.V., S.E. Greer, E. Werlin, and M. McCunn. 2012. Care of the injured worldwide: Trauma still the neglected disease of modern society. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 20: 64.CrossRefGoogle Scholar
  2. 2.
    Esmer, E., P. Derst, R. Lefering, M. Schulz, H. Siekmann, K.S. Delank, and das TraumaRegister DGU. 2017. Prehospital assessment of injury type and severity in severely injured patients by emergency physicians: An analysis of the TraumaRegister DGU(R). Der Unfallchirurg 120: 409–416.CrossRefGoogle Scholar
  3. 3.
    Spahn, D.R., B. Bouillon, V. Cerny, T.J. Coats, J. Duranteau, E. Fernandez-Mondejar, D. Filipescu, B.J. Hunt, R. Komadina, G. Nardi, E. Neugebauer, Y. Ozier, L. Riddez, A. Schultz, J.L. Vincent, and R. Rossaint. 2013. Management of bleeding and coagulopathy following major trauma: An updated European guideline. Critical Care 17: R76.CrossRefGoogle Scholar
  4. 4.
    Dutton, R.P., L.G. Stansbury, S. Leone, E. Kramer, J.R. Hess, and T.M. Scalea. 2010. Trauma mortality in mature trauma systems: Are we doing better? An analysis of trauma mortality patterns, 1997-2008. The Journal of Trauma 69: 620–626.CrossRefGoogle Scholar
  5. 5.
    Raymond, S.L., D.C. Holden, J.C. Mira, J.A. Stortz, T.J. Loftus, A.M. Mohr, L.L. Moldawer, F.A. Moore, S.D. Larson, and P.A. Efron. 2017. Microbial recognition and danger signals in sepsis and trauma. Biochimica et Biophysica Acta 1863: 2564–2573.CrossRefGoogle Scholar
  6. 6.
    Bruns, B., T. Honle, P. Kellermann, A. Ayala, and M. Perl. 2017. Divergent effects of neutrophils on Fas-induced pulmonary inflammation, apoptosis, and lung damage. Shock 47: 225–235.CrossRefGoogle Scholar
  7. 7.
    Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342: 1334–1349.CrossRefGoogle Scholar
  8. 8.
    Chian, C.F., C.H. Chiang, C. Yuan-Jung, C.H. Chuang, S.L. Liu, J. Yi-Han, H. Zhang, and J.H. Ryu. 2012. Apocynin attenuates lipopolysaccharide-induced lung injury in an isolated and perfused rat lung model. Shock 38: 196–202.CrossRefGoogle Scholar
  9. 9.
    Relja, B., R. Taraki, M.P. Teuben, K. Mors, N. Wagner, S. Wutzler, F. Hildebrand, M. Perl, and I. Marzi. 2016. Sera from severe trauma patients with pneumonia and without infectious complications have differential effects on neutrophil biology. BMC Pulmonary Medicine 16: 171.CrossRefGoogle Scholar
  10. 10.
    Wedepohl, S., F. Beceren-Braun, S. Riese, K. Buscher, S. Enders, G. Bernhard, K. Kilian, V. Blanchard, J. Dernedde, and R. Tauber. 2012. L-selectin--a dynamic regulator of leukocyte migration. European Journal of Cell Biology 91: 257–264.CrossRefGoogle Scholar
  11. 11.
    Hoth, J.J., J.D. Wells, E.M. Hiltbold, C.E. McCall, and B.K. Yoza. 2011. Mechanism of neutrophil recruitment to the lung after pulmonary contusion. Shock 35: 604–609.CrossRefGoogle Scholar
  12. 12.
    Matute-Bello, G., W.C. Liles, F. Radella 2nd, K.P. Steinberg, J.T. Ruzinski, L.D. Hudson, and T.R. Martin. 2000. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Critical Care Medicine 28: 1–7.CrossRefGoogle Scholar
  13. 13.
    Weckbach, S., C. Hohmann, S. Braumueller, S. Denk, B. Klohs, P.F. Stahel, F. Gebhard, M.S. Huber-Lang, and M. Perl. 2013. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or “double-hit” injury. Journal of Trauma and Acute Care Surgery 74: 489–498.CrossRefGoogle Scholar
  14. 14.
    Relja, B., C. Hohn, F. Bormann, K. Seyboth, D. Henrich, I. Marzi, and M. Lehnert. 2012. Acute alcohol intoxication reduces mortality, inflammatory responses and hepatic injury after haemorrhage and resuscitation in vivo. British Journal of Pharmacology 165: 1188–1199.CrossRefGoogle Scholar
  15. 15.
    Relja, B., J. Menke, N. Wagner, B. Auner, M. Voth, C. Nau, and I. Marzi. 2016. Effects of positive blood alcohol concentration on outcome and systemic interleukin-6 in major trauma patients. Injury 47: 640–645.CrossRefGoogle Scholar
  16. 16.
    Boe, D.M., S. Nelson, P. Zhang, L. Quinton, and G.J. Bagby. 2003. Alcohol-induced suppression of lung chemokine production and the host defense response to Streptococcus pneumoniae. Alcoholism, Clinical and Experimental Research 27: 1838–1845.CrossRefGoogle Scholar
  17. 17.
    Patel, M., A. Keshavarzian, V. Kottapalli, B. Badie, D. Winship, and J.Z. Fields. 1996. Human neutrophil functions are inhibited in vitro by clinically relevant ethanol concentrations. Alcoholism, Clinical and Experimental Research 20: 275–283.CrossRefGoogle Scholar
  18. 18.
    Kilkenny, C., W.J. Browne, I.C. Cuthill, M. Emerson, and D.G. Altman. 2010. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology 8: e1000412.CrossRefGoogle Scholar
  19. 19.
    Wagner, N., N. Franz, S. Dieteren, M. Perl, K. Mors, I. Marzi, and B. Relja. 2017. Acute alcohol binge deteriorates metabolic and respiratory compensation capability after blunt chest trauma followed by hemorrhagic shock - a new research model. Alcoholism, Clinical and Experimental Research 41: 1559–1567.CrossRefGoogle Scholar
  20. 20.
    Weckbach, S., M. Perl, T. Heiland, S. Braumuller, P.F. Stahel, M.A. Flierl, A. Ignatius, F. Gebhard, and M. Huber-Lang. 2012. A new experimental polytrauma model in rats: Molecular characterization of the early inflammatory response. Mediators of Inflammation 2012: 890816.CrossRefGoogle Scholar
  21. 21.
    Wagner, N., S. Dieteren, N. Franz, K. Kohler, K. Mors, L. Nicin, J. Schmidt, M. Perl, I. Marzi, and B. Relja. 2018. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS One 13: e0192171.CrossRefGoogle Scholar
  22. 22.
    Relja, B., N. Wagner, N. Franz, S. Dieteren, K. Mors, J. Schmidt, I. Marzi, and M. Perl. 2018. Ethyl pyruvate reduces acute lung damage following trauma and hemorrhagic shock via inhibition of NF-kappaB and HMGB1. Immunobiology 223: 310–318.CrossRefGoogle Scholar
  23. 23.
    Relja, B., E. Tottel, L. Breig, D. Henrich, H. Schneider, I. Marzi, and M. Lehnert. 2011. Effects of green tea catechins on the pro-inflammatory response after haemorrhage/resuscitation in rats. The British Journal of Nutrition 105: 1791–1797.CrossRefGoogle Scholar
  24. 24.
    Relja, B., J.P. Horstmann, K. Kontradowitz, K. Jurida, A. Schaible, C. Neunaber, E. Oppermann, and I. Marzi. 2015. Nlrp1 inflammasome is downregulated in trauma patients. Journal of Molecular Medicine (Berlin) 93: 1391–1400.CrossRefGoogle Scholar
  25. 25.
    Bird, M.D., M.A. Choudhry, P.E. Molina, and E.J. Kovacs. 2009. Alcohol and trauma: A summary of the satellite symposium at the 30th annual meeting of the Shock Society. Alcohol 43: 247–252.CrossRefGoogle Scholar
  26. 26.
    Veysi, V.T., V.S. Nikolaou, C. Paliobeis, N. Efstathopoulos, and P.V. Giannoudis. 2009. Prevalence of chest trauma, associated injuries and mortality: A level I trauma centre experience. International Orthopaedics 33: 1425–1433.CrossRefGoogle Scholar
  27. 27.
    Horst, K., T.P. Simon, R. Pfeifer, M. Teuben, K. Almahmoud, Q. Zhi, S.A. Santos, C.C. Wembers, S. Leonhardt, N. Heussen, P. Stormann, B. Auner, B. Relja, I. Marzi, A.T. Haug, M. van Griensven, M. Kalbitz, M. Huber-Lang, R. Tolba, L.K. Reiss, S. Uhlig, G. Marx, H.C. Pape, and F. Hildebrand. 2016. Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma. Scientific Reports 6: 39659.CrossRefGoogle Scholar
  28. 28.
    Seitz, D.H., M. Perl, U.C. Liener, B. Tauchmann, S.T. Braumuller, U.B. Bruckner, F. Gebhard, and M.W. Knoferl. 2011. Inflammatory alterations in a novel combination model of blunt chest trauma and hemorrhagic shock. The Journal of Trauma 70: 189–196.CrossRefGoogle Scholar
  29. 29.
    Wu, X.J., H.M. Liu, X.M. Song, B. Zhao, Y. Leng, E.Y. Wang, L.Y. Zhan, Q.T. Meng, and Z.Y. Xia. 2018. Penehyclidine hydrochloride inhibits TLR4 signaling and inflammation, and attenuates blunt chest trauma and hemorrhagic shock-induced acute lung injury in rats. Molecular Medicine Reports 17: 6327–6336.Google Scholar
  30. 30.
    Knoferl, M.W., U.C. Liener, D.H. Seitz, M. Perl, U.B. Bruckner, L. Kinzl, and F. Gebhard. 2003. Cardiopulmonary, histological, and inflammatory alterations after lung contusion in a novel mouse model of blunt chest trauma. Shock 19: 519–525.CrossRefGoogle Scholar
  31. 31.
    Denk, S., S. Weckbach, P. Eisele, C.K. Braun, R. Wiegner, J.J. Ohmann, L. Wrba, F.M. Hoenes, P. Kellermann, P. Radermacher, U. Wachter, S. Hafner, O. McCook, A. Schultze, A. Palmer, S. Braumuller, F. Gebhard, and M. Huber-Lang. 2018. Role of hemorrhagic shock in experimental polytrauma. Shock 49(2):154-163.  https://doi.org/10.1097/SHK.0000000000000925.
  32. 32.
    Relja, B., N. Omid, A. Schaible, M. Perl, S. Meier, E. Oppermann, M. Lehnert, and I. Marzi. 2015. Pre- or post-treatment with ethanol and ethyl pyruvate results in distinct anti-inflammatory responses of human lung epithelial cells triggered by interleukin-6. Molecular Medicine Reports 12: 2991–2998.CrossRefGoogle Scholar
  33. 33.
    Mors, K., J.A. Horauf, S. Kany, N. Wagner, R. Sturm, M. Woschek, M. Perl, I. Marzi, and B. Relja. 2017. Ethanol decreases inflammatory response in human lung epithelial cells by inhibiting the canonical NF-kB-pathway. Cellular Physiology and Biochemistry 43: 17–30.CrossRefGoogle Scholar
  34. 34.
    Mandrekar, P., D. Catalano, and G. Szabo. 1997. Alcohol-induced regulation of nuclear regulatory factor-kappa beta in human monocytes. Alcoholism, Clinical and Experimental Research 21: 988–994.Google Scholar
  35. 35.
    Mandrekar, P., D. Catalano, B. White, and G. Szabo. 2006. Moderate alcohol intake in humans attenuates monocyte inflammatory responses: Inhibition of nuclear regulatory factor kappa B and induction of interleukin 10. Alcoholism, Clinical and Experimental Research 30: 135–139.CrossRefGoogle Scholar
  36. 36.
    Hazeldine, J., P. Hampson, and J.M. Lord. 2014. The impact of trauma on neutrophil function. Injury 45: 1824–1833.CrossRefGoogle Scholar
  37. 37.
    Groeneveld, K.M., F. Hietbrink, T.C. Hardcastle, B.L. Warren, L. Koenderman, and L.P. Leenen. 2014. Penetrating thorax injury leads to mild systemic activation of neutrophils without inflammatory complications. Injury 45: 522–527.CrossRefGoogle Scholar
  38. 38.
    Visser, T., F. Hietbrink, K.M. Groeneveld, L. Koenderman, and L.P. Leenen. 2011. Isolated blunt chest injury leads to transient activation of circulating neutrophils. European Journal of Trauma and Emergency Surgery 37: 177–184.CrossRefGoogle Scholar
  39. 39.
    Cocks, R.A., and T.Y. Chan. 1997. Alteration in leukocyte adhesion molecule expression following minor, moderate and major trauma. European Journal of Emergency Medicine 4: 193–195.CrossRefGoogle Scholar
  40. 40.
    Jutila, M.A., L. Rott, E.L. Berg, and E.C. Butcher. 1989. Function and regulation of the neutrophil MEL-14 antigen in vivo: Comparison with LFA-1 and MAC-1. Journal of Immunology 143: 3318–3324.Google Scholar
  41. 41.
    Junger, W.G., S.G. Rhind, S.B. Rizoli, J. Cuschieri, A.J. Baker, P.N. Shek, D.B. Hoyt, and E.M. Bulger. 2013. Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock 40: 366–374.CrossRefGoogle Scholar
  42. 42.
    Mommsen, P., T. Barkhausen, F. Hildebrand, C. Zeckey, C. Krettek, and M. van Griensven. 2011. Regulation of L-selectin expression by trauma-relevant cytokines. Pathology, Research and Practice 207: 142–147.CrossRefGoogle Scholar
  43. 43.
    Shults, J.A., B.J. Curtis, D.M. Boe, L. Ramirez, and E.J. Kovacs. 2016. Ethanol intoxication prolongs post-burn pulmonary inflammation: Role of alveolar macrophages. Journal of Leukocyte Biology 100: 1037–1045.CrossRefGoogle Scholar
  44. 44.
    O'Brien, M., D. Moehring, R. Munoz-Planillo, G. Nunez, J. Callaway, J. Ting, M. Scurria, T. Ugo, L. Bernad, J. Cali, and D. Lazar. 2017. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells. Journal of Immunological Methods 447: 1–13.CrossRefGoogle Scholar
  45. 45.
    Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.CrossRefGoogle Scholar
  46. 46.
    Awad, F., E. Assrawi, C. Louvrier, C. Jumeau, S. Georgin-Lavialle, G. Grateau, S. Amselem, I. Giurgea, and S.A. Karabina. 2018. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacology & Therapeutics 187:133-149.  https://doi.org/10.1016/j.pharmthera.2018.02.011.
  47. 47.
    Place, D.E., and T.D. Kanneganti. 2017. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38.CrossRefGoogle Scholar
  48. 48.
    Elliott, J.M., L. Rouge, C. Wiesmann, and J.M. Scheer. 2009. Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. The Journal of Biological Chemistry 284: 6546–6553.CrossRefGoogle Scholar
  49. 49.
    Thornberry, N.A., H.G. Bull, J.R. Calaycay, K.T. Chapman, A.D. Howard, M.J. Kostura, D.K. Miller, S.M. Molineaux, J.R. Weidner, J. Aunins, K.O. Elliston, J.M. Ayala, F.J. Casano, J. Chin, G.J.F. Ding, L.A. Egger, E.P. Gaffney, G. Limjuco, O.C. Palyha, S.M. Raju, A.M. Rolando, J.P. Salley, T.T. Yamin, T.D. Lee, J.E. Shively, M. MacCross, R.A. Mumford, J.A. Schmidt, and M.J. Tocci. 1992. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774.CrossRefGoogle Scholar
  50. 50.
    Brennan, M.A., and B.T. Cookson. 2000. Salmonella induces macrophage death by caspase-1-dependent necrosis. Molecular Microbiology 38: 31–40.CrossRefGoogle Scholar
  51. 51.
    Hoyt, L.R., J.L. Ather, M.J. Randall, D.P. DePuccio, C.C. Landry, M.D. Wewers, M.A. Gavrilin, and M.E. Poynter. 2016. Ethanol and other short-chain alcohols inhibit NLRP3 inflammasome activation through protein tyrosine phosphatase stimulation. Journal of Immunology 197: 1322–1334.CrossRefGoogle Scholar
  52. 52.
    Molina, P.E., K.L. Zambell, K. Norenberg, J. Eason, H. Phelan, P. Zhang, C.V. Stouwe, J.W. Carnal, and C. Porreta. 2004. Consequences of alcohol-induced early dysregulation of responses to trauma/hemorrhage. Alcohol 33: 217–227.CrossRefGoogle Scholar
  53. 53.
    Chiu, C.H., Y.C. Wang, K.M. Yeh, J.C. Lin, L.K. Siu, and F.Y. Chang. 2018. Influence of ethanol concentration in the phagocytic function of neutrophils against Klebsiella pneumoniae isolates in an experimental model. Journal of Microbiology, Immunology, and Infection 51: 64–69.CrossRefGoogle Scholar
  54. 54.
    Oh, H., and S.L. Diamond. 2008. Ethanol enhances neutrophil membrane tether growth and slows rolling on P-selectin but reduces capture from flow and firm arrest on IL-1-treated endothelium. Journal of Immunology 181: 2472–2482.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Niklas Franz
    • 1
  • Scott Dieteren
    • 1
  • Kernt Köhler
    • 2
  • Katharina Mörs
    • 1
  • Ramona Sturm
    • 1
  • Ingo Marzi
    • 1
  • Mario Perl
    • 3
  • Borna Relja
    • 1
    Email author
  • Nils Wagner
    • 1
  1. 1.Department of Trauma, Hand and Reconstructive SurgeryUniversity Hospital Frankfurt, Goethe-UniversityFrankfurtGermany
  2. 2.Institute of Veterinary PathologyJustus Liebig University GiessenGiessenGermany
  3. 3.BG-Trauma Center MurnauMurnauGermany

Personalised recommendations