Advertisement

Inflammation

, Volume 42, Issue 2, pp 672–681 | Cite as

DUSP6 Inhibitor (E/Z)-BCI Hydrochloride Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophage Cells via Activating the Nrf2 Signaling Axis and Inhibiting the NF-κB Pathway

  • Fan Zhang
  • Bufu Tang
  • Zijiao Zhang
  • Di Xu
  • Guowu MaEmail author
ORIGINAL ARTICLE
  • 192 Downloads

Abstract

Macrophages play a fundamental role in human chronic diseases such as rheumatoid arthritis, atherosclerosis, and cancer. In the present study, we demonstrated that dual-specificity phosphatase 6 (DUSP6) was upregulated by lipopolysaccharide (LPS) treatment of macrophages. (E/Z)-BCI hydrochloride (BCI) functions as a small molecule inhibitor of DUSP6, and BCI treatment inhibited DUSP6 expression in LPS-activated macrophages. BCI treatment inhibited LPS-triggered inflammatory cytokine production, including IL-1β and IL-6, but not TNF-α, and also affected macrophage polarization to an M1 phenotype. In addition, BCI treatment decreased reactive oxygen species (ROS) production and significantly elevated the levels of Nrf2. Interestingly, pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory responses was independent of extracellular signal-regulated kinase (ERK) signaling. Furthermore, BCI treatment inhibited phosphorylation of P65 and nuclear P65 expression in LPS-activated macrophages. These results demonstrated that pharmacological inhibition of DUSP6 attenuated LPS-induced inflammatory mediators and ROS production in macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-κB pathway. These anti-inflammatory effects indicated that BCI may be considered as a therapeutic agent for blocking inflammatory disorders.

KEY WORDS

Dusp6 inflammation LPS macrophage BCI 

Notes

Acknowledgments

This study was supported by School of Stomatology, Dalian Medical University, Dalian 116044, PR China.

Author’s Contribution

Fan Zhang and Bufu Tang performed the experiments. Fan Zhang analyzed the data. Zijiao Zhang and Di Xu contributed reagents, materials, and analysis tools. Fan Zhang and Bufu Tang wrote the paper. Fan Zhang edited the paper.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pullamsetti, S.S., R. Savai, W. Janssen, B.K. Dahal, W. Seeger, F. Grimminger, H.A. Ghofrani, N. Weissmann, and R.T. Schermuly. 2011. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clinical Microbiology and Infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17 (1): 7–14.CrossRefGoogle Scholar
  2. 2.
    Garcia-Hernandez, M.H., R. Gonzalez-Amaro, and D.P. Portales-Perez. 2014. Specific therapy to regulate inflammation in rheumatoid arthritis: Molecular aspects. Immunotherapy 6 (5): 623–636.CrossRefGoogle Scholar
  3. 3.
    Mendel, I., N. Yacov, D. Harats, and E. Breitbart. 2015. Therapies targeting innate immunity for fighting inflammation in atherosclerosis. Current Pharmaceutical Design 21 (9): 1185–1195.CrossRefGoogle Scholar
  4. 4.
    Karam, B.S., A. Chavez-Moreno, W. Koh, J.G. Akar, and F.G. Akar. 2017. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology. 16 (1): 120.CrossRefGoogle Scholar
  5. 5.
    Fernandes, J.V., R.N. Cobucci, C.A. Jatoba, T.A. Fernandes, J.W. de Azevedo, and J.M. de Araujo. 2015. The role of the mediators of inflammation in cancer development. Pathology Oncology Research : POR 21 (3): 527–534.CrossRefGoogle Scholar
  6. 6.
    Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.CrossRefGoogle Scholar
  7. 7.
    Hedger, M.P. 2002. Macrophages and the immune responsiveness of the testis. Journal of Reproductive Immunology. 57 (1–2): 19–34.CrossRefGoogle Scholar
  8. 8.
    Zhou, D., C. Huang, Z. Lin, S. Zhan, L. Kong, C. Fang, and J. Li. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cellular Signalling. 26 (2): 192–197.CrossRefGoogle Scholar
  9. 9.
    Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling. 13 (2): 85–94.CrossRefGoogle Scholar
  10. 10.
    Laskin, D.L., V.R. Sunil, C.R. Gardner, and J.D. Laskin. 2011. Macrophages and tissue injury: Agents of defense or destruction? Annual Review of Pharmacology and Toxicology 51: 267–288.CrossRefGoogle Scholar
  11. 11.
    Arkell, R.S., R.J. Dickinson, M. Squires, S. Hayat, S.M. Keyse, and S.J. Cook. 2008. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling 20 (5): 836–843.CrossRefGoogle Scholar
  12. 12.
    Eblaghie, M.C., J.S. Lunn, R.J. Dickinson, A.E. Munsterberg, J.J. Sanz-Ezquerro, E.R. Farrell, et al. 2003. Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Current Biology : CB 13 (12): 1009–1018.CrossRefGoogle Scholar
  13. 13.
    Ahmad, M.K., N.A. Abdollah, N.H. Shafie, N.M. Yusof, and S.R.A. Razak. 2018. Dual-specificity phosphatase 6 (DUSP6): A review of its molecular characteristics and clinical relevance in cancer. Cancer Biology & Medicine 15 (1): 14–28.CrossRefGoogle Scholar
  14. 14.
    Li, C., D.A. Scott, E. Hatch, X. Tian, and S.L. Mansour. 2007. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development (Cambridge, England) 134 (1): 167–176.CrossRefGoogle Scholar
  15. 15.
    Maillet, M., N.H. Purcell, M.A. Sargent, A.J. York, Bueno OF, and J.D. Molkentin. 2008. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. The Journal of Biological Chemistry 283 (45): 31246–31255.CrossRefGoogle Scholar
  16. 16.
    Feng, B., P. Jiao, Z. Yang, and H. Xu. 2012. MEK/ERK pathway mediates insulin-promoted degradation of MKP-3 protein in liver cells. Molecular and Cellular Endocrinology. 361 (1–2): 116–123.CrossRefGoogle Scholar
  17. 17.
    Bertin, S., B. Lozano-Ruiz, V. Bachiller, I. Garcia-Martinez, S. Herdman, P. Zapater, et al. 2015. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunology 8 (3): 505–515.CrossRefGoogle Scholar
  18. 18.
    Hsu, W.C., M.Y. Chen, S.C. Hsu, L.R. Huang, C.Y. Kao, W.H. Cheng, C.H. Pan, M.S. Wu, G.Y. Yu, M.S. Hung, C.M. Leu, T.H. Tan, and Y.W. Su. 2018. DUSP6 mediates T cell receptor-engaged glycolysis and restrains TFH cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 115 (34): E8027–E8e36.CrossRefGoogle Scholar
  19. 19.
    Li, G.Y., Y. Zhou, R.S. Ying, L. Shi, Y.Q. Cheng, J.P. Ren, et al. 2015. Hepatitis C virus-induced reduction in miR-181a impairs CD4(+) T-cell responses through overexpression of DUSP6. Hepatology (Baltimore, Md) 61 (4): 1163–1173.CrossRefGoogle Scholar
  20. 20.
    Molina, G., A. Vogt, A. Bakan, W. Dai, P. Queiroz de Oliveira, W. Znosko, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nature Chemical Biology 5 (9): 680–687.CrossRefGoogle Scholar
  21. 21.
    Wu, Q.N., Y.F. Liao, Y.X. Lu, Y. Wang, J.H. Lu, Z.L. Zeng, Q.T. Huang, H. Sheng, J.P. Yun, D. Xie, H.Q. Ju, and R.H. Xu. 2018. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters 412: 243–255.CrossRefGoogle Scholar
  22. 22.
    Missinato, M.A., M. Saydmohammed, D.A. Zuppo, K.S. Rao, G.W. Opie, B. Kuhn, et al. 2018. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development (Cambridge, England) 145 (5).Google Scholar
  23. 23.
    Mittal, M., M.R. Siddiqui, K. Tran, S.P. Reddy, and A.B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling 20 (7): 1126–1167.CrossRefGoogle Scholar
  24. 24.
    Jaramillo, M.C., and D.D. Zhang. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes & Development 27 (20): 2179–2191.CrossRefGoogle Scholar
  25. 25.
    Lawrence, T. 2009. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1 (6): a001651.CrossRefGoogle Scholar
  26. 26.
    Du, M., L. Yuan, X. Tan, D. Huang, X. Wang, Z. Zheng, et al. 2017. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nature Communications 8 (1): 2049.CrossRefGoogle Scholar
  27. 27.
    Kim, K.J., K.Y. Yoon, H.S. Yoon, S.R. Oh, and B.Y. Lee. 2015. Brazilein suppresses inflammation through inactivation of IRAK4-NF-kappaB pathway in LPS-induced Raw264.7 macrophage cells. International Journal of Molecular Sciences 16 (11): 27589–27598.CrossRefGoogle Scholar
  28. 28.
    Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.CrossRefGoogle Scholar
  29. 29.
    Fujiwara, N., and K. Kobayashi. 2005. Macrophages in inflammation. Current Drug Targets Inflammation and Allergy 4 (3): 281–286.CrossRefGoogle Scholar
  30. 30.
    Hsu, S.F., Y.B. Lee, Y.C. Lee, A.L. Chung, M.K. Apaya, L.F. Shyur, C.F. Cheng, F.M. Ho, and T.C. Meng. 2018. Dual specificity phosphatase DUSP6 promotes endothelial inflammation through inducible expression of ICAM-1. The FEBS Journal 285 (9): 1593–1610.CrossRefGoogle Scholar
  31. 31.
    Zhang, H., Q. Guo, C. Wang, L. Yan, Y. Fu, M. Fan, X. Zhao, and M. Li. 2013. Dual-specificity phosphatase 6 (Dusp6), a negative regulator of FGF2/ERK1/2 signaling, enhances 17beta-estradiol-induced cell growth in endometrial adenocarcinoma cell. Molecular and Cellular Endocrinology 376 (1–2): 60–69.CrossRefGoogle Scholar
  32. 32.
    Lu, J., X. Liu, Y. Liao, D. Wang, J. Chen, and S. Li. 2018. Jian-Pi-Yi-Shen formula regulates inflammatory cytokines production in 5/6 nephrectomized rats via suppression of NF-kappaB activation. Evidence-Based Complementary and Alternative Medicine : eCAM 2018: 7203547.Google Scholar
  33. 33.
    Wu, X., H. Gao, Y. Hou, J. Yu, W. Sun, Y. Wang, X. Chen, Y. Feng, Q.M. Xu, and X. Chen. 2018. Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-kappaB, mitochondrial ROS, and MAPK pathways. Toxicology and Applied Pharmacology 355: 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fan Zhang
    • 1
  • Bufu Tang
    • 2
  • Zijiao Zhang
    • 1
  • Di Xu
    • 1
  • Guowu Ma
    • 1
    Email author
  1. 1.School of StomatologyDalian Medical UniversityDalianPeople’s Republic of China
  2. 2.Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention ResearchAffiliated Lishui Hospital of Zhejiang UniversityLishuiChina

Personalised recommendations