Advertisement

Inflammation

, Volume 42, Issue 2, pp 572–585 | Cite as

Neuronal EphA4 Regulates OGD/R-Induced Apoptosis by Promoting Alternative Activation of Microglia

  • Hui-Xing Wei
  • Pei-Sen Yao
  • Ping-Ping Chen
  • Jian-Hua Guan
  • Jin-Hong Zhuang
  • Jia-Bin Zhu
  • Gang WuEmail author
  • Jin-Shan YangEmail author
ORIGINAL ARTICLE
  • 218 Downloads

Abstract

Accumulating evidence indicates that post-injury inflammation characterized by activated microglia contributes much to the neuropathology of ischemic injury. Several studies have demonstrated that microglia exhibit two entirely different functional activation states, referred to as classically activated (M1) and alternatively activated (M2) phenotype. Promoting microglial phenotype to switch from M1 dominant to M2 dominant might be a promising approach for handling ischemic injury. However, the comprehensive mechanism that underlines microglia polarization in ischemic brain remains unclear. Neuronal erythropoietin-producing human hepatocellular carcinoma cell receptor 4 (EphA4), the richest Eph receptor in the central nervous system (CNS), upregulate after ischemia and may have the potential to regulate microglia activation. We hypothesized that modulating EphA4/ephrin signaling could affect ischemic injury through controlling microglia polarization. We therefore knocked down neuronal EphA4 with short hairpin RNA (shRNA) and determined the role of EphA4/ephrin signaling in oxygen-glucose deprivation and reperfusion (OGD/R)-induced injury. We found that EphA4 shRNA treatment attenuated OGD/R-induced apoptosis and microglia proliferation. Neuronal EphA4 knockdown also promoted microglial M2 polarization, which reduced pro-inflammatory mediators and released anti-inflammatory cytokines as well as neurotrophic factors. We further revealed that EphA4 shRNA treatment functioned through RhoA/Rho-associated kinase 2 (ROCK2) signaling, a key mediator of microglia alternative activation. Together, these data suggested that blockage of EphA4/ephrin signaling between neuron and microglia decreased OGD/R-induced injury by promoting alternative activation of microglia via RhoA/ROCK2 signaling.

KEY WORDS

Ischemia inflammatory injury EphA4/ephrin signaling microglial polarization RhoA/ROCK2 signaling 

Notes

Funding Information

This work was partly financially supported by the Fujian Provincial Natural Science Foundation (Grant nos. 2017J05123 and 2018J01175); Startup Fund for Scientific Research, Fujian Medical University (Grant No. 2016QH067); Young and Middle-aged Backbone Key Research Project of the National Health and Family Planning Commission of Fujian Province (Grant nos. 2017-ZQN-46 and 2018-ZQN-48); and the National Natural Science Foundation of China (Grant no. 81802492).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10753_2018_914_Fig6_ESM.png (2.3 mb)
Figure S1

Co-staining of Iba1 (red) and GFP (green) in co-cultures. No double labeled cells were observed in (A3) which confirmed that microglia in co-cultures were not infected by EphA4 shRNA lentivirus. Scale bar = 100 μm. (PNG 2361 kb)

10753_2018_914_MOESM1_ESM.tif (69.4 mb)
High resolution image (TIF 71037 kb)

References

  1. 1.
    Borrajo, A., A.I. Rodriguez-Perez, B. Villar-Cheda, M.J. Guerra, and J.L. Labandeira-Garcia. 2014. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 85: 1–8.  https://doi.org/10.1016/j.neuropharm.2014.05.021. CrossRefGoogle Scholar
  2. 2.
    Carmona, M.A., K.K. Murai, L. Wang, A.J. Roberts, and E.B. Pasquale. 2009. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12524–12529.  https://doi.org/10.1073/pnas.0903328106.CrossRefGoogle Scholar
  3. 3.
    Cherry, J.D., J.A. Olschowka, and M.K. O’Banion. 2014. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation 11: 98.  https://doi.org/10.1186/1742-2094-11-98.CrossRefGoogle Scholar
  4. 4.
    Corraliza, I.M., G. Soler, K. Eichmann, and M. Modolell. 1995. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochemical and Biophysical Research Communications 206 (2): 667–673.  https://doi.org/10.1006/bbrc.1995.1094.CrossRefGoogle Scholar
  5. 5.
    Elbashir, S.M., J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 (6836): 494–498.  https://doi.org/10.1038/35078107.CrossRefGoogle Scholar
  6. 6.
    Fan, R., B. Enkhjargal, R. Camara, F. Yan, L. Gong, J. Tang ShengtaoYao, Y. Chen, and J.H. Zhang. 2017. Critical role of EphA4 in early brain injury after subarachnoid hemorrhage in rat. Experimental Neurology 296: 41–48.  https://doi.org/10.1016/j.expneurol.2017.07.003.CrossRefGoogle Scholar
  7. 7.
    Fang, Q., A. Strand, W. Law, V.M. Faca, M.P. Fitzgibbon, N. Hamel, B. Houle, X. Liu, D.H. May, G. Poschmann, L. Roy, K. Stühler, W. Ying, J. Zhang, Z. Zheng, J.J.M. Bergeron, S. Hanash, F. He, B.R. Leavitt, H.E. Meyer, X. Qian, and M.W. McIntosh. 2009. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Molecular & Cellular Proteomics 8 (3): 451–466.  https://doi.org/10.1074/mcp.M800231-MCP200. CrossRefGoogle Scholar
  8. 8.
    Filosa, A., S. Paixao, S.D. Honsek, M.A. Carmona, L. Becker, B. Feddersen, L. Gaitanos, et al. 2009. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience 12 (10): 1285–1292.  https://doi.org/10.1038/nn.2394. CrossRefGoogle Scholar
  9. 9.
    Fu, A.K., K.W. Hung, H. Huang, S. Gu, Y. Shen, E.Y. Cheng, F.C. Ip, X. Huang, W.Y. Fu, and N.Y. Ip. 2014. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America 111 (27): 9959–9964.  https://doi.org/10.1073/pnas.1405803111.CrossRefGoogle Scholar
  10. 10.
    Gingras, M., V. Gagnon, S. Minotti, H.D. Durham, and F. Berthod. 2007. Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord. Journal of Neuroscience Methods 163 (1): 111–118.  https://doi.org/10.1016/j.jneumeth.2007.02.024.CrossRefGoogle Scholar
  11. 11.
    Hashimoto, R., Y. Nakamura, H. Kosako, M. Amano, K. Kaibuchi, M. Inagaki, and M. Takeda. 1999. Distribution of Rho-kinase in the bovine brain. Biochemical and Biophysical Research Communications 263 (2): 575–579.  https://doi.org/10.1006/bbrc.1999.1409.CrossRefGoogle Scholar
  12. 12.
    He, G.Q., W.M. Xu, J.F. Li, S.S. Li, B. Liu, X.D. Tan, and C.Q. Li. 2015. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary rat cortical neuronal cells. Molecular Brain 8: 88.  https://doi.org/10.1186/s13041-015-0178-y.CrossRefGoogle Scholar
  13. 13.
    Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, and J. Chen. 2015. Microglial and macrophage polarization-new prospects for brain repair. Nature Reviews. Neurology 11 (1): 56–64.  https://doi.org/10.1038/nrneurol.2014.207.CrossRefGoogle Scholar
  14. 14.
    Hu, X., P. Li, Y. Guo, H. Wang, R.K. Leak, S. Chen, Y. Gao, and J. Chen. 2012. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 (11): 3063–3070.  https://doi.org/10.1161/STROKEAHA.112.659656.CrossRefGoogle Scholar
  15. 15.
    Kemmerling, N., P. Wunderlich, S. Theil, B. Linnartz-Gerlach, N. Hersch, B. Hoffmann, M.T. Heneka, B. de Strooper, H. Neumann, and J. Walter. 2017. Intramembranous processing by gamma-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 65 (7): 1103–1118.  https://doi.org/10.1002/glia.23147.CrossRefGoogle Scholar
  16. 16.
    Klein, R. 2009. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nature Neuroscience 12 (1): 15–20.  https://doi.org/10.1038/nn.2231.CrossRefGoogle Scholar
  17. 17.
    Lemmens, R., T. Jaspers, W. Robberecht, and V.N. Thijs. 2013. Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke. Human Molecular Genetics 22 (11): 2214–2220.  https://doi.org/10.1093/hmg/ddt073.CrossRefGoogle Scholar
  18. 18.
    Li, J., N. Liu, Y. Wang, R. Wang, D. Guo, and C. Zhang. 2012. Inhibition of EphA4 signaling after ischemia-reperfusion reduces apoptosis of CA1 pyramidal neurons. Neuroscience Letters 518 (2): 92–95.  https://doi.org/10.1016/j.neulet.2012.04.060.CrossRefGoogle Scholar
  19. 19.
    Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25 (4): 402–408.  https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  20. 20.
    Ma, Y., J. Wang, Y. Wang, and G.Y. Yang. 2017. The biphasic function of microglia in ischemic stroke. Progress in Neurobiology 157: 247–272.  https://doi.org/10.1016/j.pneurobio.2016.01.005.CrossRefGoogle Scholar
  21. 21.
    Morris, S.M., Jr. 2007. Arginine metabolism: boundaries of our knowledge. The Journal of Nutrition 137 (6 Suppl 2): 1602S–1609S.  https://doi.org/10.1093/jn/137.6.1602S.CrossRefGoogle Scholar
  22. 22.
    Munro, K.M., V.M. Perreau, and A.M. Turnley. 2012. Differential gene expression in the EphA4 knockout spinal cord and analysis of the inflammatory response following spinal cord injury. PLoS One 7 (5): e37635.  https://doi.org/10.1371/journal.pone.0037635.CrossRefGoogle Scholar
  23. 23.
    Murai, K.K., L.N. Nguyen, F. Irie, Y. Yamaguchi, and E.B. Pasquale. 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neuroscience 6 (2): 153–160.  https://doi.org/10.1038/nn994.CrossRefGoogle Scholar
  24. 24.
    Nakagawa, O., K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, and S. Narumiya. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Letters 392 (2): 189–193.CrossRefGoogle Scholar
  25. 25.
    Noren, N.K., and E.B. Pasquale. 2004. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cellular Signalling 16 (6): 655–666.  https://doi.org/10.1016/j.cellsig.2003.10.006.CrossRefGoogle Scholar
  26. 26.
    Qin, H., R. Noberini, X. Huan, J. Shi, E.B. Pasquale, and J. Song. 2010. Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. The Journal of Biological Chemistry 285 (1): 644–654.  https://doi.org/10.1074/jbc.M109.064824.CrossRefGoogle Scholar
  27. 27.
    Roser, A.E., L. Tonges, and P. Lingor. 2017. Modulation of microglial activity by Rho-kinase (ROCK) inhibition as therapeutic strategy in Parkinson’s disease and amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience 9: 94.  https://doi.org/10.3389/fnagi.2017.00094.CrossRefGoogle Scholar
  28. 28.
    Scheiblich, H., and G. Bicker. 2017. Regulation of microglial phagocytosis by RhoA/ROCK-inhibiting drugs. Cellular and Molecular Neurobiology 37 (3): 461–473.  https://doi.org/10.1007/s10571-016-0379-7.CrossRefGoogle Scholar
  29. 29.
    Schmucker, D., and S.L. Zipursky. 2001. Signaling downstream of Eph receptors and ephrin ligands. Cell 105 (6): 701–704.CrossRefGoogle Scholar
  30. 30.
    Shamah, S.M., M.Z. Lin, J.L. Goldberg, S. Estrach, M. Sahin, L. Hu, M. Bazalakova, R.L. Neve, G. Corfas, A. Debant, and M.E. Greenberg. 2001. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105 (2): 233–244.CrossRefGoogle Scholar
  31. 31.
    Shu, Y., B. Xiao, Q. Wu, T. Liu, Y. Du, H. Tang, S. Chen, L. Feng, L. Long, and Y. Li. 2016. The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Molecular Neurobiology 53 (1): 561–576.  https://doi.org/10.1007/s12035-014-9020-2.CrossRefGoogle Scholar
  32. 32.
    Takahashi, I., Y. Hama, M. Matsushima, M. Hirotani, T. Kano, H. Hohzen, I. Yabe, J. Utsumi, and H. Sasaki. 2015. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Molecular Brain 8 (1): 67.  https://doi.org/10.1186/s13041-015-0161-7. CrossRefGoogle Scholar
  33. 33.
    Takeuchi, S., H. Katoh, and M. Negishi. 2015. Eph/ephrin reverse signalling induces axonal retraction through RhoA/ROCK pathway. Journal of Biochemistry 158 (3): 245–252.  https://doi.org/10.1093/jb/mvv042.CrossRefGoogle Scholar
  34. 34.
    Tatsumi, E., H. Yamanaka, K. Kobayashi, H. Yagi, M. Sakagami, and K. Noguchi. 2015. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia 63 (2): 216–228.  https://doi.org/10.1002/glia.22745.CrossRefGoogle Scholar
  35. 35.
    Xiao, H., Q. Huang, J.Q. Wang, Q.Q. Deng, and W.P. Gu. 2016. Effect of ephrin-B2 on the expressions of angiopoietin-1 and -2 after focal cerebral ischemia/reperfusion. Neural Regeneration Research 11 (11): 1784–1789.  https://doi.org/10.4103/1673-5374.194723.CrossRefGoogle Scholar
  36. 36.
    Yang, J., X. Luo, X. Huang, Q. Ning, M. Xie, and W. Wang. 2014. Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. Journal of Neurochemistry 131 (3): 383–394.  https://doi.org/10.1111/jnc.12819.CrossRefGoogle Scholar
  37. 37.
    Yang, J.S., H.X. Wei, P.P. Chen, and G. Wu. 2018. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Experimental and Therapeutic Medicine 15 (3): 2219–2227.  https://doi.org/10.3892/etm.2018.5702. Google Scholar
  38. 38.
    Zhang, H., Y. Li, J. Yu, M. Guo, J. Meng, C. Liu, Y. Xie, L. Feng, B. Xiao, and C. Ma. 2013. Rho kinase inhibitor fasudil regulates microglia polarization and function. Neuroimmunomodulation 20 (6): 313–322.  https://doi.org/10.1159/000351221.CrossRefGoogle Scholar
  39. 39.
    Zujovic, V., and V. Taupin. 2003. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: control of microglial activation. Methods 29 (4): 345–350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hui-Xing Wei
    • 1
  • Pei-Sen Yao
    • 2
  • Ping-Ping Chen
    • 1
  • Jian-Hua Guan
    • 1
  • Jin-Hong Zhuang
    • 1
  • Jia-Bin Zhu
    • 1
    • 3
  • Gang Wu
    • 1
    Email author
  • Jin-Shan Yang
    • 1
    Email author
  1. 1.Department of NeurologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouPeople’s Republic of China
  2. 2.Department of NeurosurgeryThe First Affiliated Hospital of Fujian Medical UniversityFuzhouPeople’s Republic of China
  3. 3.Department of NeurologyHuian County HospitalQuanzhouPeople’s Republic of China

Personalised recommendations