pp 1–11 | Cite as

Human Adipose Tissue-Derived Stromal Cells Attenuate the Multiple Organ Injuries Induced by Sepsis and Mechanical Ventilation in Mice

  • Shuya Mei
  • Shuang Wang
  • Shuqing Jin
  • Xiang Zhao
  • Zhenzhen Shao
  • Renlingzi Zhang
  • Xiangsheng Yu
  • Yao Tong
  • Shibiao Chen
  • Zhixia ChenEmail author
  • Quan LiEmail author


Mechanical ventilation (MV) can augment sepsis-induced organ injury. Previous studies indicate that human mesenchymal stem cells (hMSCs) have immune-modulatory effect. We hypothesize that human adipose tissue-derived stromal cells (hADSCs) could attenuate MV and sepsis-induced organ injury. Male C57BL/6 mice were randomized to five groups: Sham group; MV group; cecal ligation and puncture (CLP) group; CLP + MV group; and CLP + MV + hADSC group. Anesthetized mice were subjected to cecal ligation and puncture surgery. The mice then received mechanical ventilation (12 ml/kg), with or without the intervention of hADSCs. The survival rate, organ injury of the liver and kidney, total protein and cells in bronchoalveolar lavage fluid (BALF), and histological changes of the lung and liver were examined. The level of IL-6 in BALF was measured by ELISA. Real-time quantitative PCR was used to analyze mRNA of IL-6 and tumor necrosis factor-α (TNF-α). hADSC treatment increased survival rate of septic mice with MV. hADSCs attenuated dysfunction of the liver and kidney and decreased lung inflammation and tissue injury of the liver and lung. IL-6 level in BALF and TNF-α and IL-6 mRNA expression in the tissue of the lung, liver, and kidney were significantly reduced by hADSC treatment. MV with conventional tidal volume aggravates CLP-induced multiple organ injuries. hADSCs inhibited the compound injuries possibly through modulation of immune responses.


human adipose mesenchymal stem cells sepsis mechanical ventilation 



Thanks for Yiteng Liao, Hao Li, and Hongming Zhu’s help during the experiment.

Author Contribution

Shuya Mei mainly completed this experiment and wrote this manuscript. Shuang Wang, Shuqing Jin, Xiang Zhao, Zhenzhen Shao, Renlingzi Zhang, and Xiangsheng Yu helped to finish this experiment. Yao Tong and Shibiao Chen have seen the original data. Zhixia Chen and Quan Li modified the final manuscript. All authors approved the final manuscript. Zhixia Chen and Quan Li were responsible for finalizing this manuscript.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chao, Y.H., H.P. Wu, K.H. Wu, Y.G. Tsai, C.T. Peng, K.C. Lin, W.R. Chao, M.S. Lee, and Y.C. Fu. 2014. An increase in cd3+cd4+cd25+ regulatory t cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9: e110338.CrossRefGoogle Scholar
  2. 2.
    Krisztián Németh, A Leelahavanichkul, Peter S T Yuen, Balázs Mayer, Alissa Parmelee1, Kent Doi, Pamela G Robey, Kantima Leelahavanichkul, Beverly H Koller, Jared M Brown, Xuzhen Hu, Ivett Jelinek, Robert A Star, and Éva Mezey. Bone marrow stromal cells attenuate sepsis via prostaglandin e2—Dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 2009;15.CrossRefGoogle Scholar
  3. 3.
    Pinhu, L., T. Whitehead, T. Evans, and M. Griffiths. 2003. Ventilator-associated lung injury. Lancet (London, England) 361: 332–340.CrossRefGoogle Scholar
  4. 4.
    Kuiper, J.W., A.B. Groeneveld, A.S. Slutsky, and F.B. Plotz. 2005. Mechanical ventilation and acute renal failure. Critical Care Medicine 33: 1408–1415.CrossRefGoogle Scholar
  5. 5.
    Yehya, N., Y. Xin, Y. Oquendo, M. Cereda, R.R. Rizi, and S.S. Margulies. 2015. Cecal ligation and puncture accelerates development of ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 308: L443–L451.CrossRefGoogle Scholar
  6. 6.
    Villar, J., N. Cabrera, M. Casula, C. Flores, F. Valladares, M. Muros, L. Blanch, A.S. Slutsky, and R.M. Kacmarek. 2010. Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine 36: 1049–1057.CrossRefGoogle Scholar
  7. 7.
    Matthay, M.A., B.T. Thompson, E.J. Read, D.H. McKenna Jr., K.D. Liu, C.S. Calfee, and J.W. Lee. 2010. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 138: 965–972.CrossRefGoogle Scholar
  8. 8.
    Dimarino, A.M., A.I. Caplan, and T.L. Bonfield. 2013. Mesenchymal stem cells in tissue repair. Frontiers in Immunology 4: 201.CrossRefGoogle Scholar
  9. 9.
    Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang. 2014. Immunobiology of mesenchymal stem cells. Cell Death and Differentiation 21: 216–225.CrossRefGoogle Scholar
  10. 10.
    Rocheteau, P., L. Chatre, D. Briand, M. Mebarki, G. Jouvion, J. Bardon, C. Crochemore, P. Serrani, P.P. Lecci, M. Latil, B. Matot, P.G. Carlier, N. Latronico, C. Huchet, A. Lafoux, T. Sharshar, M. Ricchetti, and F. Chretien. 2015. Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nature Communications 6: 10145.CrossRefGoogle Scholar
  11. 11.
    Anderson, P., L. Souza-Moreira, M. Morell, M. Caro, F. O'Valle, E. Gonzalez-Rey, and M. Delgado. 2013. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62: 1131–1141.CrossRefGoogle Scholar
  12. 12.
    Hayes, M., C. Masterson, J. Devaney, F. Barry, S. Elliman, T. O'Brien, D. O'Toole, G.F. Curley, and J.G. Laffey. 2015. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat. Anesthesiology 122: 363–373.CrossRefGoogle Scholar
  13. 13.
    Curley, G.F., M. Hayes, B. Ansari, G. Shaw, A. Ryan, F. Barry, T. O'Brien, D. O'Toole, and J.G. Laffey. 2012. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax 67: 496–501.CrossRefGoogle Scholar
  14. 14.
    Muller-Redetzky, H.C., D. Will, K. Hellwig, W. Kummer, T. Tschernig, U. Pfeil, R. Paddenberg, M.D. Menger, O. Kershaw, A.D. Gruber, N. Weissmann, S. Hippenstiel, N. Suttorp, and M. Witzenrath. 2014. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: Protection by adrenomedullin. Critical Care (London, England) 18: R73.CrossRefGoogle Scholar
  15. 15.
    Rittirsch, Daniel, M.S. Huber-Lang, M.A. Flierl, and Peter A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4.CrossRefGoogle Scholar
  16. 16.
    Papaiahgari, S., A. Yerrapureddy, S.R. Reddy, N.M. Reddy, O.J. Dodd, M.T. Crow, D.N. Grigoryev, K. Barnes, R.M. Tuder, M. Yamamoto, T.W. Kensler, S. Biswal, W. Mitzner, P.M. Hassoun, and S.P. Reddy. 2007. Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. American Journal of Respiratory and Critical Care Medicine 176: 1222–1235.CrossRefGoogle Scholar
  17. 17.
    Schaffler, A., and C. Buchler. 2007. Concise review: Adipose tissue-derived stromal cells--Basic and clinical implications for novel cell-based therapies. Stem Cells (Dayton, Ohio) 25: 818–827.CrossRefGoogle Scholar
  18. 18.
    Ding, X., X. Wang, X. Zhao, S. Jin, Y. Tong, H. Ren, Z. Chen, and Q. Li. 2015. Rgd peptides protects against acute lung injury in septic mice through wisp1-integrin beta6 pathway inhibition. Shock (Augusta, Ga.) 43: 352–360.CrossRefGoogle Scholar
  19. 19.
    Suzuki, S., S. Nakamura, T. Koizumi, S. Sakaguchi, S. Baba, H. Muro, et al. 1991. The beneficial effect of a prostaglandin I2 analog on ischemic rat liver. Transplantation 52: 979–983.CrossRefGoogle Scholar
  20. 20.
    Gupta, N., A. Krasnodembskaya, M. Kapetanaki, M. Mouded, X. Tan, V. Serikov, and M.A. Matthay. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67: 533–539.CrossRefGoogle Scholar
  21. 21.
    Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8: 315–317.CrossRefGoogle Scholar
  22. 22.
    Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 315: 801–810.CrossRefGoogle Scholar
  23. 23.
    Seymour, C.W.L.V., T.J. Iwashyna, F.M. Brunkhorst, T.D. Rea, A. Scherag, G. Rubenfeld, J.M. Kahn, M. Shankar-Hari, M. Singer, C.S. Deutschman, G.J. Escobar, and D.C. Angus. 2016. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3). Journal of the American Medical Association 15: 762–774.CrossRefGoogle Scholar
  24. 24.
    Muller, H.C., K. Hellwig, S. Rosseau, T. Tschernig, A. Schmiedl, B. Gutbier, B. Schmeck, S. Hippenstiel, H. Peters, L. Morawietz, N. Suttorp, and M. Witzenrath. 2010. Simvastatin attenuates ventilator-induced lung injury in mice. Critical Care (London, England) 14: R143.CrossRefGoogle Scholar
  25. 25.
    Fuller, B.M., N.M. Mohr, M. Dettmer, S. Kennedy, K. Cullison, R. Bavolek, N. Rathert, and C. McCammon. 2013. Mechanical ventilation and acute lung injury in emergency department patients with severe sepsis and septic shock: An observational study. Academic Emergency Medicine 20: 659–669.CrossRefGoogle Scholar
  26. 26.
    Xuan, W., Q. Zhou, S. Yao, Q. Deng, T. Wang, and Q. Wu. 2015. Mechanical ventilation induces an inflammatory response in preinjured lungs in late phase of sepsis. Oxidative Medicine and Cellular Longevity 2015: 364020.CrossRefGoogle Scholar
  27. 27.
    Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & Redox Signaling 10: 739–753.CrossRefGoogle Scholar
  28. 28.
    Chapman, K.E., S.E. Sinclair, D. Zhuang, A. Hassid, L.P. Desai, and C.M. Waters. 2005. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. American Journal of Physiology—Lung Cellular and Molecular Physiology 289: 834–841.CrossRefGoogle Scholar
  29. 29.
    Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. The Journal of Clinical Investigation 116: 2532–2542.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pati, S., M.H. Gerber, T.D. Menge, K.A. Wataha, Y. Zhao, J.A. Baumgartner, J. Zhao, P.A. Letourneau, M.P. Huby, L.A. Baer, J.R. Salsbury, R.A. Kozar, C.E. Wade, P.A. Walker, P.K. Dash, C.S. Cox Jr., M.F. Doursout, and J.B. Holcomb. 2011. Bone marrow derived mesenchymal stem cells inhibit inflammation and preserve vascular endothelial integrity in the lungs after hemorrhagic shock. PLoS One 6: e25171.CrossRefGoogle Scholar
  31. 31.
    Goodwin, M., V. Sueblinvong, P. Eisenhauer, N.P. Ziats, L. LeClair, M.E. Poynter, C. Steele, M. Rincon, and D.J. Weiss. 2011. Bone marrow-derived mesenchymal stromal cells inhibit th2-mediated allergic airways inflammation in mice. Stem Cells (Dayton, Ohio) 29: 1137–1148.CrossRefGoogle Scholar
  32. 32.
    Ivanova-Todorova, E., I. Bochev, M. Mourdjeva, R. Dimitrov, D. Bukarev, S. Kyurkchiev, P. Tivchev, I. Altunkova, and D.S. Kyurkchiev. 2009. Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters 126: 37–42.CrossRefGoogle Scholar
  33. 33.
    Chang, C.L., S. Leu, H.C. Sung, Y.Y. Zhen, C.L. Cho, A. Chen, T.H. Tsai, S.Y. Chung, H.T. Chai, C.K. Sun, C.H. Yen, and H.K. Yip. 2012. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine 10: 244.CrossRefGoogle Scholar
  34. 34.
    Zhang, S., S.D. Danchuk, R.W. Bonvillain, B. Xu, B.A. Scruggs, A.L. Strong, J.A. Semon, J.M. Gimble, A.M. Betancourt, D.E. Sullivan, and B.A. Bunnell. 2014. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury. Stem Cells (Dayton, Ohio) 32: 1616–1628.CrossRefGoogle Scholar
  35. 35.
    Mei, S.H., J.J. Haitsma, C.C. Dos Santos, Y. Deng, P.F. Lai, A.S. Slutsky, W.C. Liles, and D.J. Stewart. 2010. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine 182: 1047–1057.CrossRefGoogle Scholar
  36. 36.
    Asmussen, S., H. Ito, D.L. Traber, J.W. Lee, R.A. Cox, H.K. Hawkins, D.F. McAuley, D.H. McKenna, L.D. Traber, H. Zhuo, J. Wilson, D.N. Herndon, D.S. Prough, K.D. Liu, M.A. Matthay, and P. Enkhbaatar. 2014. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia. Thorax 69: 819–825.CrossRefGoogle Scholar
  37. 37.
    Lee, J.W., X. Fang, N. Gupta, V. Serikov, and M.A. Matthay. 2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America 106: 16357–16362.CrossRefGoogle Scholar
  38. 38.
    Lee, J.W., A. Krasnodembskaya, D.H. McKenna, Y. Song, J. Abbott, and M.A. Matthay. 2013. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American Journal of Respiratory and Critical Care Medicine 187: 751–760.CrossRefGoogle Scholar
  39. 39.
    Hall, S.R., K. Tsoyi, B. Ith, R.F. Padera Jr., J.A. Lederer, Z. Wang, X. Liu, and M.A. Perrella. 2013. Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: The importance of neutrophils. Stem Cells (Dayton, Ohio) 31: 397–407.CrossRefGoogle Scholar
  40. 40.
    Kol, A., S. Foutouhi, N.J. Walker, N.T. Kong, B.C. Weimer, and D.L. Borjesson. 2014. Gastrointestinal microbes interact with canine adipose-derived mesenchymal stem cells in vitro and enhance immunomodulatory functions. Stem Cells and Development 23: 1831–1843.CrossRefGoogle Scholar
  41. 41.
    Chen, H.H., K.C. Lin, C.G. Wallace, Y.T. Chen, C.C. Yang, S. Leu, Y.C. Chen, C.K. Sun, T.H. Tsai, Y.L. Chen, S.Y. Chung, C.L. Chang, and H.K. Yip. 2014. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. Journal of Pineal Research 57: 16–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuya Mei
    • 1
    • 2
  • Shuang Wang
    • 3
  • Shuqing Jin
    • 3
  • Xiang Zhao
    • 3
  • Zhenzhen Shao
    • 3
  • Renlingzi Zhang
    • 3
  • Xiangsheng Yu
    • 3
  • Yao Tong
    • 3
  • Shibiao Chen
    • 1
  • Zhixia Chen
    • 3
    • 4
    Email author
  • Quan Li
    • 3
    • 4
    Email author
  1. 1.Department of AnesthesiologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
  2. 2.Department of ICU, South Campus, Ren Ji Hospital, School of MedicineShanghai JiaoTong UniversityShanghaiChina
  3. 3.Department of Anesthesiology, East HospitalTongji University School of MedicinePudong New AreaChina
  4. 4.Department of Anesthesiology, National Cancer Center/Cancer Hospital and Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina

Personalised recommendations