, Volume 42, Issue 2, pp 449–462 | Cite as

DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes

  • Mariana Rodrigues DavansoEmail author
  • Carolina Caliari-Oliveira
  • Carlos Eduardo Barra Couri
  • Dimas Tadeu Covas
  • Angela Merice de Oliveira Leal
  • Júlio César Voltarelli
  • Kelen Cristina Ribeiro Malmegrim
  • Juliana Navarro Ueda Yaochite


Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.

Key Words

DPP-4 inhibitor sitaglipitin experimental type 1 diabetes GLP-1 regulatory T cells 



The authors would like to thank and honor the memory of Prof. Júlio César Voltarelli, mastermind of stem cell transplantation studies for autoimmune diseases in Brazil. The authors are grateful to Patricia V. B. Palma and Camila C.B.O. Menezes for flow cytometry analysis, to the staff of the Regional Blood Center of Ribeirão Preto, to Rosane Bolzoni, Maria Isabel da Matta, and Giuliana M. Bertolino for their assistance with routine laboratory procedures.

Author’s Contribution

MRD participated in the design of the study, performed experiments and sample collection, analyzed all results, and wrote the manuscript. CCO participated in the experiments, sample collection, and reviewed the manuscript. DTC provided infrastructure and administrative supports. JCV (in memoriam) participated in the conception and coordination of the study, provided financial support, and discussed the experimental plans and results. AMOL, KCRM, and CEBC supervised the work, discussed the experimental plans and results, and reviewed the manuscript. JNUY supervised the work, provided financial support, discussed the experimental plans and results, and reviewed the manuscript.


This study is financially supported by the Brazilian research financial agencies São Paulo Research Foundation (FAPESP; grants 2010/02074-3 and INCTC-2008/57877-3) and CNPq (INCTC-573754/2008–0).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

10753_2018_954_MOESM1_ESM.pdf (43 kb)
Supplemental Table 1 Levels of cytokines in pancreatic homogenate of untreated diabetic animals and treated with the DPP-4 inhibitor after 30 and 90 days of treatment. IFN-γ, TNF-α, IL-17 and IL-10 were measured in of diabetic group and diabetic group treated with iDPP-4 after 30 and 90 days of treatment. After the treatment with iDDP-4, the animals had their pancreas collected and processed in the presence of protease inhibitor. Cytokines were quantified by ELISA and its concentration represented by the ratio of pictogram of cytokine per gram of pancreatic tissue. *P < 0.05 diabetic group compared to the diabetic group treated with iDPP-4 in the same period. (PDF 42 kb)
10753_2018_954_MOESM2_ESM.pdf (66 kb)
Supplemental Table 2 iDPP-4 treatment ameliorated metabolic, systemic and local immunological parameters of type 1 diabetic mice. Diabetic animals treated and untreated with DPP-4 inhibitor incorporated into the diet ad libitum for 30 and 90 days. After being considered diabetic, the animals received control diet (AIN-93 M Purified) or diet containing MK0431 (MK0431 4 g/kg added to AIN-93 M diet Purified) ad libitum. (A) Active GLP-1, insulin and glucagon serum levels of untreated diabetic mice and treated with DPP-4 inhibitor after treatment were determined by ELISA. Glucose tolerance oral test (GTOT) was performed after iDPP-4. At the end of treatment and after 12 h of fasting, glucose solution (1.5 mg/g animal) was administered by gavage (oral) and blood glucose levels were monitored before glucose administration, 15, 30, 60, 90, 120 and 180 min after. (B) Pancreas morphology was performed by hematoxylin-eosin staining and glucagon staining. After the treatment with iDDP-4, the animals had their pancreas collected, embedded in paraffin, cut into sections of 5 μm, to perform the immunohistochemical reactions to hematoxylin-eosin and glucagon, viewed by optic microscopy. Staining for glucagon was performed for to evaluate the numbers and size of pancreatic islet. Quantitative analysis for all staining was performed in a blinded manner with imaging software. (C) CD3 + CD4+, CD3 + CD8+, CD3 + CD4 + CD26+ and CD3 + CD8 + CD26+ T cells, CD4 + CD25 + Foxp3+ and CD4 + CD25hiFoxp3+ regulatory T cells were quantified in the spleen of diabetic group and diabetic group treated with iDPP-4 after of treatment by flux cytometry. (D) CD3 + CD4+ and CD3 + CD8+ T cells and CD11b + macrophages in pancreatic lymph nodes. IFN-γ, TNF-α, IL-17 and IL-10 were quantified by ELISA and its concentration represented by the ratio of pictogram of cytokine per gram of pancreatic tissue. All parameters described above were evaluated 30 and 90 days after iDPP4 treatment. (PDF 65 kb)
10753_2018_954_MOESM3_ESM.docx (152 kb)
Supplemental Figure 1 Analysis of chow and iDPP-4 intake between different cages of diabetic mice (D) and diabetic mice treated with iDPP-4 (D + iDPP-4). Diabetic mice and diabetic mice treated with DPP-4 inhibitor incorporated into the diet ad libitum for 30 and 90 days. After being considered diabetic, the animals received control diet (AIN-93 M Purified) or diet containing MK0431 (MK0431 4 g/kg added to AIN-93 M diet Purified) ad libitum. (A) The amount of chow consumed by the groups was analyzed. (B) The amount of iDPP-4 consumed by the groups was calculated based on chow consumed. Since between cages mice could ingest different amounts of DPP-4 inhibitor, two different cages were analyzed. (DOCX 151 kb)


  1. 1.
    Creutzfeldt, W. 1979. The incretin concept today. Diabetologia 16 (2): 75–85.CrossRefPubMedGoogle Scholar
  2. 2.
    Ellis, S.L., E.G. Moser, J.K. Snell-Bergeon, A.S. Rodionova, R.M. Hazenfield, and S.K. Garg. 2011. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, double-blind, randomized, crossover trial. Diabetic Medicine 28 (10): 1176–1181.CrossRefPubMedGoogle Scholar
  3. 3.
    Drucker, D.J., and M.A. Nauck. 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368 (9548): 1696–1705.CrossRefPubMedGoogle Scholar
  4. 4.
    Baggio, L.L., and D.J. Drucker. 2006. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annual Review of Medicine 57: 265–281.CrossRefPubMedGoogle Scholar
  5. 5.
    Xue, S., C.H. Wasserfall, M. Parker, T.M. Brusko, S. McGrail, K. McGrail, M. Moore, M. Campbell-Thompson, D.A. Schatz, M.A. Atkinson, and M.J. Haller. 2008. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Annals of the New York Academy of Sciences 1150: 152–156.CrossRefPubMedGoogle Scholar
  6. 6.
    Orskov, C., A. Wettergren, and J.J. Holst. 1993. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42 (5): 658–661.CrossRefPubMedGoogle Scholar
  7. 7.
    Hopsu-Havu, V.K., and G.G. Glenner. 1966. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7 (3): 197–201.CrossRefPubMedGoogle Scholar
  8. 8.
    Kameoka, J., T. Tanaka, Y. Nojima, S.F. Schlossman, and C. Morimoto. 1993. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261 (5120): 466–469.CrossRefPubMedGoogle Scholar
  9. 9.
    Yaron, A., and F. Naider. 1993. Proline-dependent structural and biological properties of peptides and proteins. Critical Reviews in Biochemistry and Molecular Biology 28 (1): 31–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Rawlings, N.D., and A.J. Barrett. 1994. Families of serine peptidases. Methods in Enzymology 244: 19–61.CrossRefPubMedGoogle Scholar
  11. 11.
    De Meester, I., S. Korom, J. Van Damme, and S. Scharpe. 1999. CD26, let it cut or cut it down. Immunology Today 20 (8): 367–375.CrossRefPubMedGoogle Scholar
  12. 12.
    Fisman, E.Z., and A. Tenenbaum. 2015. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovascular Diabetology 14: 129.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kadowaki, T., K. Sasaki, M. Ishii, M. Matsukawa, and Y. Ushirogawa. 2018. Efficacy and safety of teneligliptin 40 mg in type 2 diabetes: a pooled analysis of two phase III clinical studies. Diabetes Therapy 9: 623.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nishio, S., M. Abe, and H. Ito. 2015. Anagliptin in the treatment of type 2 diabetes: safety, efficacy, and patient acceptability. Diabetes, Metabolic Syndrome & Obesity 8: 163–171.Google Scholar
  15. 15.
    Li, F.F., L.L. Jiang, R.N. Yan, H.H. Zhu, P.H. Zhou, D.F. Zhang, X.F. Su, J.D. Wu, L. Ye, and J.H. Ma. 2016. Effects of saxagliptin add-on therapy to insulin on blood glycemic fluctuations in patients with type 2 diabetes: a randomized, control, open-labeled trial. Medicine (Baltimore) 95 (43): e5229.CrossRefGoogle Scholar
  16. 16.
    Röhrborn, D., N. Wronkowitz, and J. Eckel. 2015. DPP4 in diabetes. Frontiers in Immunology 6: 386.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Keating, G.M. 2010. Vildagliptin: a review of its use in type 2 diabetes mellitus. Drugs 70 (16): 2089–2112.CrossRefPubMedGoogle Scholar
  18. 18.
    Yang, L.P. 2012. Saxagliptin: a review of its use as combination therapy in the management of type 2 diabetes mellitus in the EU. Drugs 72 (2): 229–248.CrossRefPubMedGoogle Scholar
  19. 19.
    Deeks, E.D. 2012. Linagliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 72 (13): 1793–1824.CrossRefPubMedGoogle Scholar
  20. 20.
    Scott, L.J. 2010. Alogliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 70 (15): 2051–2072.CrossRefPubMedGoogle Scholar
  21. 21.
    Tatosian, D.A., Y. Guo, A.K. Schaeffer, N. Gaibu, S. Popa, A. Stoch, R.B. Langdon, and E.A. Kauh. 2013. Dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes treated with saxagliptin, sitagliptin, or vildagliptin. Diabetes Therapy 4 (2): 431–442.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Penno, G., M. Garofolo, and S. Del Prato. 2016. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutrition, Metabolism, and Cardiovascular Diseases 26 (5): 361–373.CrossRefPubMedGoogle Scholar
  23. 23.
    Davis, T.M. 2014. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment. Diabetes, Obesity & Metabolism16 (10): 891–899.Google Scholar
  24. 24.
    Zhang, Z., X. Chen, P. Lu, J. Zhang, Y. Xu, W. He, M. Li, S. Zhang, J. Jia, S. Shao, J. Xie, Y. Yang, and X. Yu. 2017. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovascular Diabetology16 (1): 31.Google Scholar
  25. 25.
    Koska, J., M. Sands, C. Burciu, and P. Reaven. 2015. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes. Diabetes & Vascular Disease Research 12 (3): 154–163.CrossRefGoogle Scholar
  26. 26.
    Makdissi, A., H. Ghanim, M. Vora, K. Green, S. Abuaysheh, A. Chaudhuri, S. Dhindsa, and P. Dandona. 2012. Sitagliptin exerts an antinflammatory action. The Journal of Clinical Endocrinology and Metabolism 97 (9): 3333–3341.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aroor, A., S. McKarns, R. Nistala, V. Demarco, M. Gardner, M. Garcia-Touza, et al. 2013. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Medicine 3 (1): 48–56.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shirakawa, J., T. Okuyama, M. Kyohara, E. Yoshida, Y. Togashi, K. Tajima, S. Yamazaki, M. Kaji, M. Koganei, H. Sasaki, and Y. Terauchi. 2016. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetology and Metabolic Syndrome 8: 16.CrossRefPubMedGoogle Scholar
  29. 29.
    He, J., G. Yuan, F. Cheng, J. Zhang, and X. Guo. 2017. Mast cell and M1 macrophage infiltration and local pro-inflammatory factors were attenuated with incretin-based therapies in obesity-related Glomerulopathy. Metabolic Syndrome and Related Disorders 15 (7): 344–353.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Birnbaum, Y., M. Bajaj, H.C. Yang, and Y. Ye. 2018. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC Inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovascular Drugs and Therapy 32: 135–145.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao, Y., L. Yang, Y. Xiang, L. Liu, G. Huang, Z. Long, X. Li, R.D. Leslie, X. Wang, and Z. Zhou. 2014. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains β-cell function in patients with recent-onset latent autoimmune diabetes in adults: One year prospective study. The Journal of Clinical Endocrinology and Metabolism 99 (5): E876–E880.CrossRefPubMedGoogle Scholar
  32. 32.
    Willheim, M., C. Ebner, K. Baier, W. Kern, K. Schrattbauer, R. Thien, et al. 1997. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. The Journal of Allergy and Clinical Immunology 100 (3): 348–355.CrossRefPubMedGoogle Scholar
  33. 33.
    Cordero, O.J., F.J. Salgado, J.E. Vinuela, and M. Nogueira. 1997. Interleukin-12 enhances CD26 expression and dipeptidyl peptidase IV function on human activated lymphocytes. Immunobiology 197 (5): 522–533.CrossRefPubMedGoogle Scholar
  34. 34.
    Pinheiro, M.M., F.M. Pinheiro, and M.A. Torres. 2016. Four-year clinical remission of type 1 diabetes mellitus in two patients treated with sitagliptin and vitamin D3. Endocrinology Diabetes Metabolism Case Reports 2016: 16–0099.CrossRefGoogle Scholar
  35. 35.
    Alonso, N., M.T. Julián, J. Carrascal, R. Colobran, I. Pujol-Autonell, S. Rodriguez-Fernández, A. Teniente, M.A. Fernández, A. Miñarro, M.C. Ruiz de Villa, M. Vives-Pi, and M. Puig-Domingo. 2015. Type 1 diabetes prevention in NOD mice by targeting DPPIV/CD26 is associated with changes in CD8+T effector memory subset. PLoS One 10 (11): e0142186.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vargová, L., K. Zacharovová, E. Dovolilová, L. Vojtová, Z. Cimburek, and F. Saudek. 2013. The effects of DPP-IV inhibition in NOD mice with overt diabetes. Folia Biologica (Praha) 59 (3): 116–122.Google Scholar
  37. 37.
    Kim, S.J., C. Nian, and C.H. McIntosh. 2010. Sitagliptin (MK0431) inhibition of dipeptidyl peptidase IV decreases nonobese diabetic mouse CD4+ T-cell migration through incretin-dependent and -independent pathways. Diabetes 59 (7): 1739–1750.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kodera, R., K. Shikata, T. Takatsuka, K. Oda, S. Miyamoto, N. Kajitani, D. Hirota, T. Ono, H.K. Usui, and H. Makino. 2014. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochemical and Biophysical Research Communications 443 (3): 828–833.CrossRefPubMedGoogle Scholar
  39. 39.
    Awata, T., A. Shimada, T. Maruyama, Y. Oikawa, N. Yasukawa, S. Kurihara, Y. Miyashita, M. Hatano, Y. Ikegami, M. Matsuda, M. Niwa, Y. Kazama, S. Tanaka, and T. Kobayashi. 2017. Possible Long-term efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, for slowly progressive type 1 diabetes (SPIDDM) in the stage of non-insulin-dependency: an open-label randomized controlled pilot trial (SPAN-S). Diabetes Therapy 8 (5): 1123–1134.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lima-Martínez, M.M., E. Guerra-Alcalá, M. Contreras, J. Nastasi, J.A. Noble, and C. Polychronakos. 2014. One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinology Diabetes Metabolism Case Report 2014: 140072.Google Scholar
  41. 41.
    Schopman, J.E., J.B. Hoekstra, B.M. Frier, M.T. Ackermans, J.J. de Sonnaville, A.M. Stades, et al. 2015. Effects of sitagliptin on counter-regulatory and incretin hormones during acute hypoglycaemia in patients with type 1 diabetes: a randomized double-blind placebo-controlled crossover study. Diabetes, Obesity & Metabolism 17 (6): 546–553.CrossRefGoogle Scholar
  42. 42.
    Couri, C.E., M.C. Oliveira, A.B. Stracieri, D.A. Moraes, F. Pieroni, G.M. Barros, M.I. Madeira, K.C. Malmegrim, M.C. Foss-Freitas, B.P. Simões, E.Z. Martinez, M.C. Foss, R.K. Burt, and J.C. Voltarelli. 2009. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Journal of the American Medical Association 301 (15): 1573–1579.CrossRefPubMedGoogle Scholar
  43. 43.
    Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition 123 (11): 1939–1951.CrossRefPubMedGoogle Scholar
  44. 44.
    Yaochite, J.N., C. Caliari-Oliveira, M.R. Davanso, D. Carlos, K.C. Malmegrim, C.R. Cardoso, et al. 2013. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology 218 (3): 338–352.CrossRefPubMedGoogle Scholar
  45. 45.
    Hadjiyanni, I., L.L. Baggio, P. Poussier, and D.J. Drucker. 2008. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 149 (3): 1338–1349.CrossRefPubMedGoogle Scholar
  46. 46.
    Tian, L., J. Gao, J. Hao, Y. Zhang, H. Yi, T.D. O'Brien, R. Sorenson, J. Luo, and Z. Guo. 2010. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151 (7): 3049–3060.CrossRefPubMedGoogle Scholar
  47. 47.
    Keenan, H.A., J.K. Sun, J. Levine, A. Doria, L.P. Aiello, G. Eisenbarth, S. Bonner-Weir, and G.L. King. 2010. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes 59 (11): 2846–2853.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Perl, S., J.A. Kushner, B.A. Buchholz, A.K. Meeker, G.M. Stein, M. Hsieh, M. Kirby, S. Pechhold, E.H. Liu, D.M. Harlan, and J.F. Tisdale. 2010. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. The Journal of Clinical Endocrinology and Metabolism 95 (10): E234–E239.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Drucker, D.J. 2006. The biology of incretin hormones. Cell Metabolism 3 (3): 153–165.CrossRefPubMedGoogle Scholar
  50. 50.
    Baggio, L.L., and D.J. Drucker. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132 (6): 2131–2157.CrossRefGoogle Scholar
  51. 51.
    Pospisilik, J.A., S.G. Stafford, H.U. Demuth, C.H. McIntosh, and R.A. Pederson. 2002. Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes 51 (9): 2677–2683.CrossRefPubMedGoogle Scholar
  52. 52.
    Pospisilik, J.A., S.G. Stafford, H.U. Demuth, R. Brownsey, W. Parkhouse, D.T. Finegood, C.H.S. McIntosh, and R.A. Pederson. 2002. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 51 (4): 943–950.CrossRefPubMedGoogle Scholar
  53. 53.
    Atkin, S.L., N. Katsiki, M. Banach, D.P. Mikhailidis, M. Pirro, and A. Sahebkar. 2017. Effect of dipeptidyl peptidase-4 inhibitors on circulating tumor necrosis factor-α concentrations: a systematic review and meta-analysis of controlled trials. Journal of Diabetes and its Complications 31 (9): 1458–1464.CrossRefPubMedGoogle Scholar
  54. 54.
    Hattori, A., M. Takemoto, H. Tokuyama, M. Koshizaka, and K. Yokote. 2017. Sitagliptin but not alpha glucosidase inhibitor reduced the serum soluble CD163, a marker for activated macrophage, in individuals with type 2 diabetes mellitus. Diabetes Research and Clinical Practice 126: 138–143.CrossRefPubMedGoogle Scholar
  55. 55.
    Brubaker, P.L., and D.J. Drucker. 2004. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145 (6): 2653–2659.CrossRefPubMedGoogle Scholar
  56. 56.
    Drucker, D.J. 2007. The role of gut hormones in glucose homeostasis. The Journal of Clinical Investigation 117 (1): 24–32.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ding, L., C.A. Gysemans, G. Stangé, Y. Heremans, Y. Yuchi, T. Takiishi, H. Korf, M. Chintinne, R.D. Carr, H. Heimberg, D. Pipeleers, and C. Mathieu. 2014. Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice. PLoS One 9 (9): e107935.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gonçalves, A., C. Marques, E. Leal, C.F. Ribeiro, F. Reis, A.F. Ambrósio, and R. Fernandes. 2014. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochimica et Biophysica Acta 1842 (9): 1454–1463.CrossRefPubMedGoogle Scholar
  59. 59.
    Wang, Q., M. Long, H. Qu, R. Shen, R. Zhang, J. Xu, et al. 2018. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. Journal Diabetes Research 2018: 5308582.Google Scholar
  60. 60.
    Cho, J.M., H.W. Jang, H. Cheon, Y.T. Jeong, D.H. Kim, Y.M. Lim, S.H. Choi, E.K. Yang, C.Y. Shin, M.H. Son, S.H. Kim, H.J. Kim, and M.S. Lee. 2011. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. Diabetes Research and Clinical Practice 91 (1): 72–79.CrossRefPubMedGoogle Scholar
  61. 61.
    Pospisilik, J.A., J. Martin, T. Doty, J.A. Ehses, N. Pamir, F.C. Lynn, S. Piteau, H.U. Demuth, C.H.S. McIntosh, and R.A. Pederson. 2003. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52 (3): 741–750.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2008. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 57 (5): 1331–1339.CrossRefPubMedGoogle Scholar
  63. 63.
    Cabrera, S.M., S.C. Colvin, S.A. Tersey, B. Maier, J.L. Nadler, and R.G. Mirmira. 2013. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clinical and Experimental Immunology 172 (3): 375–382.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Creutzfeldt, W.O., N. Kleine, B. Willms, C. Orskov, J.J. Holst, and M.A. Nauck. 1996. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19 (6): 580–586.CrossRefPubMedGoogle Scholar
  65. 65.
    Liu, W., D.O. Son, H.K. Lau, Y. Zhou, G.J. Prud'homme, T. Jin, et al. 2017. Combined oral administration of GABA and DPP-4 inhibitor prevents Beta cell damage and promotes beta cell regeneration in mice. Frontiers in Pharmacology 8: 362.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tourrel, C., D. Bailbé, M.J. Meile, M. Kergoat, and B. Portha. 2001. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50 (7): 1562–1570.CrossRefPubMedGoogle Scholar
  67. 67.
    Reinhold, D., B. Hemmer, B. Gran, I. Born, J. Faust, K. Neubert, H.F. McFarland, R. Martin, and S. Ansorge. 1998. Inhibitors of dipeptidyl peptidase IV/CD26 suppress activation of human MBP-specific CD4+ T cell clones. Journal of Neuroimmunology 87 (1–2): 203–209.CrossRefPubMedGoogle Scholar
  68. 68.
    Dobrian, A.D., Q. Ma, J.W. Lindsay, K.A. Leone, K. Ma, J. Coben, et al. 2010. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. American Journal of Physiology. Endocrinology and Metabolism 300 (2): E410–E421.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Josefowicz, S.Z., and A. Rudensky. 2009. Control of regulatory T cell lineage commitment and maintenance. Immunity 30 (5): 616–625.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ohnuma, K., M. Uchiyama, T. Yamochi, K. Nishibashi, O. Hosono, N. Takahashi, S. Kina, H. Tanaka, X. Lin, N.H. Dang, and C. Morimoto. 2007. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. The Journal of Biological Chemistry 282 (13): 10117–10131.Google Scholar
  71. 71.
    Fan, H., S. Yan, S. Stehling, D. Marguet, D. Schuppaw, and W. Reutter. 2003. Dipeptidyl peptidase IV/CD26 in T cell activation, cytokine secretion and immunoglobulin production. Advances in Experimental Medicine and Biology 524: 165–174.CrossRefPubMedGoogle Scholar
  72. 72.
    Reinhold, D., U. Bank, F. Buhling, M. Tager, I. Born, J. Faust, et al. 1997. Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) induces secretion of transforming growth factor-beta 1 (TGF-beta 1) in stimulated mouse splenocytes and thymocytes. Immunology Letters 58 (1): 29–35.CrossRefPubMedGoogle Scholar
  73. 73.
    Reinhold, D., T. Kahne, M. Tager, U. Lendeckel, F. Buhling, U. Bank, et al. 1997. The effect of anti-CD26 antibodies on DNA synthesis and cytokine production (IL-2, IL-10 and IFN-gamma) depends on enzymatic activity of DP IV/CD26. Advances in Experimental Medicine and Biology 421: 149–155.CrossRefPubMedGoogle Scholar
  74. 74.
    Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2009. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 58 (3): 641–651.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jelsing, J., N. Vrang, S.B. van Witteloostuijn, M. Mark, and T. Klein. 2012. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. The Journal of Endocrinology 214 (3): 381–387.CrossRefPubMedGoogle Scholar
  76. 76.
    Lee, S.A., Y.R. Kim, E.J. Yang, E.J. Kwon, S.H. Kim, S.H. Kang, D.B. Park, B.C. Oh, J. Kim, S.T. Heo, G. Koh, and D.H. Lee. 2013. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism 98 (6): 2553–2561.CrossRefPubMedGoogle Scholar
  77. 77.
    Aso, Y., M. Fukushima, M. Sagara, T. Jojima, T. Iijima, K. Suzuki, A. Momobayashi, K. Kasai, and T. Inukai. 2015. Sitagliptin, a DPP-4 inhibitor, alters the subsets of circulating CD4+ T cells in patients with type 2 diabetes. Diabetes Research and Clinical Practice 110 (3): 250–256.CrossRefPubMedGoogle Scholar
  78. 78.
    Pinheiro, M.M., C.L. Stoppa, C.J. Valduga, C.E. Okuyama, R. Gorjão, R.M. Pereira, et al. 2017. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. European Journal of Pharmaceutical Sciences 100: 17–24.CrossRefPubMedGoogle Scholar
  79. 79.
    Rabinovitch, A. 1998. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes/Metabolism Reviews 14 (2): 129–151.CrossRefPubMedGoogle Scholar
  80. 80.
    van Belle, T.L., K.T. Coppieters, and M.G. von Herrath. 2011. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews 91 (1): 79–118.CrossRefPubMedGoogle Scholar
  81. 81.
    Baharlou, R., A. Ahmadi-Vasmehjani, M.H. Davami, F. Faraji, M.R. Atashzar, F. Karimipour, A. Sadeghi, M.A. Asadi, and M. Khoubyari. 2016. Elevated levels of T-helper 17-associated cytokines in diabetes type I patients: indicators for following the course of disease. Immunological Investigations 45 (7): 641–651.CrossRefPubMedGoogle Scholar
  82. 82.
    Bellemore, S.M., E. Nikoopour, O. Krougly, E. Lee-Chan, L.A. Fouser, and B. Singh. 2016. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22. Clinical and Experimental Immunology 183 (3): 380–388.CrossRefPubMedGoogle Scholar
  83. 83.
    Kuriya, G., T. Uchida, S. Akazawa, M. Kobayashi, K. Nakamura, T. Satoh, I. Horie, E. Kawasaki, H. Yamasaki, L. Yu, Y. Iwakura, H. Sasaki, Y. Nagayama, A. Kawakami, and N. Abiru. 2013. Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia 56 (8): 1773–1780.CrossRefPubMedGoogle Scholar
  84. 84.
    Bellemore, S.M., E. Nikoopour, J.A. Schwartz, O. Krougly, E. Lee-Chan, and B. Singh. 2015. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice. Clinical and Experimental Immunology 182 (3): 261–269.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mariana Rodrigues Davanso
    • 1
    • 2
    Email author
  • Carolina Caliari-Oliveira
    • 3
  • Carlos Eduardo Barra Couri
    • 4
  • Dimas Tadeu Covas
    • 1
    • 4
  • Angela Merice de Oliveira Leal
    • 5
  • Júlio César Voltarelli
    • 1
    • 4
  • Kelen Cristina Ribeiro Malmegrim
    • 1
    • 6
  • Juliana Navarro Ueda Yaochite
    • 7
  1. 1.Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.In Situ Cell Therapy, Supera Innovation Technology ParkRibeirão PretoBrazil
  4. 4.Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  5. 5.Departamento de MedicinaUniversidade Federal de São CarlosSão CarlosBrazil
  6. 6.Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  7. 7.Departmento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e EnfermagemUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations