Advertisement

Inflammation

, Volume 42, Issue 2, pp 413–425 | Cite as

Effects of IL-1β on MMP-9 Expression in Cementoblast-Derived Cell Line and MMP-Mediated Degradation of Type I Collagen

  • Mingyuan Du
  • Yunlong Wang
  • Zhijian Liu
  • Leilei Wang
  • Zhengguo Cao
  • Chen Zhang
  • Yunru Hao
  • Hong HeEmail author
ORIGINAL ARTICLE

Abstract

It has been reported that matrix metalloproteinases (MMPs) are induced by many cytokines, and they are involved in various inflammatory processes, including periodontitis. However, the effects of interleukin-1β (IL-1β) on MMP-9 expression in cementoblasts, the cells responsible for cementum production, remain largely unknown. In this study, we used qPCR and gelatin zymogram analysis to show that IL-1β upregulated MMP-9 expression in cementoblast-derived cell line. Several signaling pathways, such as ERK1/2, JNK, p38, and AP-1 (c-Fos and ATF-2), were activated in response to IL-1β stimulation. Furthermore, enhancement of AP-1 activity by IL-1β was further confirmed by the AP-1 reporter assay and the electrophoretic mobility shift assay (EMSA). Pretreatment with specific inhibitors of ERK1/2 (U0126), JNK (SP600125), and AP-1 (tanshinone IIA) attenuated IL-1β-induced MMP-9 expression. In addition, inhibitors of ERK1/2 (U0126) and JNK (SP600125) attenuated IL-1β-enhanced AP-1 activity. This suggested that IL-1β stimulated AP-1 activation, at least partially, through ERK1/2 and JNK signaling pathways. Moreover, we found that IL-1β also upregulated the expression of MMP-13 and enhanced MMP-mediated degradation of type I collagen. Collectively, these results suggested that IL-1β induced MMP-9 expression by activation of AP-1 through the ERK1/2 and JNK signaling pathways in cementoblast-derived cell line and enhanced MMP-mediated collagen degradation possibly by MMP-13 and MMP-9.

KEY WORDS

interleukin-1β MAPK signaling pathway dental cementum matrix metalloproteinases cell-mediated collagen degradation 

Notes

Author’s Contribution

Mingyuan Du contributed to conception and design, contributed to data acquisition, analysis, and interpretation, and drafted the manuscript. Yunlong Wang, Zhingjian Liu, Leilei Wang, Zhengguo Cao contributed to conception and design; Chen Zhang and Hong He contributed to data analysis and interpretation; Yunlong Wang and Yunru Hao contributed to acquisition. All authors critically revised the manuscript, gave final approval, and agree to be accountable for all aspects of the work, ensuring integrity and accuracy.

Funding

This study was financially supported by grants from the National Natural Science Foundation of China (Nos. 81671020, 81200811, and 81701013).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10753_2018_951_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2033 kb)

References

  1. 1.
    Bartold, P.M., and T.E. Van Dyke. 2013. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontology 2000 62 (1): 203–217.  https://doi.org/10.1111/j.1600-0757.2012.00450.x.CrossRefGoogle Scholar
  2. 2.
    Darveau, R.P. 2010. Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews. Microbiology 8 (7): 481–490.  https://doi.org/10.1038/nrmicro2337.CrossRefGoogle Scholar
  3. 3.
    Giannobile, W.V. 2008. Host-response therapeutics for periodontal diseases. Journal of Periodontology 79 (8 Suppl): 1592–1600.  https://doi.org/10.1902/jop.2008.080174.CrossRefGoogle Scholar
  4. 4.
    Ebersole, J.L., and M.A. Taubman. 1994. The protective nature of host responses in periodontal diseases. Periodontol 2000 5: 112–141.CrossRefGoogle Scholar
  5. 5.
    Sapna, G., S. Gokul, and K. Bagri-Manjrekar. 2014. Matrix metalloproteinases and periodontal diseases. Oral Diseases 20 (6): 538–550.  https://doi.org/10.1111/odi.12159.CrossRefGoogle Scholar
  6. 6.
    Parks, W.C., C.L. Wilson, and Y.S. Lopez-Boado. 2004. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Reviews Immunology 4 (8): 617–629.  https://doi.org/10.1038/nri1418.CrossRefGoogle Scholar
  7. 7.
    Page-McCaw, A., A.J. Ewald, and Z. Werb. 2007. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews Molecular Cell Biology 8 (3): 221–233.  https://doi.org/10.1038/nrm2125.CrossRefGoogle Scholar
  8. 8.
    Bernard, Y., C. Melchior, E. Tschirhart, and J.L. Bueb. 2008. Co-cultures of human coronary smooth muscle cells and dimethyl sulfoxide-differentiated HL60 cells upregulate ProMMP9 activity and promote mobility-modulation by reactive oxygen species. Inflammation 31 (5): 287–298.  https://doi.org/10.1007/s10753-008-9077-z.CrossRefGoogle Scholar
  9. 9.
    Pasternak, B., and P. Aspenberg. 2009. Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthopaedica 80 (6): 693–703.  https://doi.org/10.3109/17453670903448257.CrossRefGoogle Scholar
  10. 10.
    Arpino, V., M. Brock, and S.E. Gill. 2015. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology 44-46: 247–254.  https://doi.org/10.1016/j.matbio.2015.03.005.CrossRefGoogle Scholar
  11. 11.
    Hernandez, M., M.A. Valenzuela, C. Lopez-Otin, J. Alvarez, J.M. Lopez, R. Vernal, and J. Gamonal. 2006. Matrix metalloproteinase-13 is highly expressed in destructive periodontal disease activity. Journal of Periodontology 77 (11): 1863–1870.  https://doi.org/10.1902/jop.2006.050461.CrossRefGoogle Scholar
  12. 12.
    Hernandez, M., N. Dutzan, J. Garcia-Sesnich, L. Abusleme, A. Dezerega, N. Silva, F.E. Gonzalez, R. Vernal, T. Sorsa, and J. Gamonal. 2011. Host-pathogen interactions in progressive chronic periodontitis. Journal of Dental Research 90 (10): 1164–1170.  https://doi.org/10.1177/0022034511401405.CrossRefGoogle Scholar
  13. 13.
    Sorsa, T., U.K. Gursoy, S. Nwhator, M. Hernandez, T. Tervahartiala, J. Leppilahti, M. Gursoy, E. Könönen, G. Emingil, P.J. Pussinen, and P. Mäntylä. 2016. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontology 2000 70 (1): 142–163.  https://doi.org/10.1111/prd.12101.CrossRefGoogle Scholar
  14. 14.
    Makela, M., T. Salo, V.J. Uitto, and H. Larjava. 1994. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. Journal of Dental Research 73 (8): 1397–1406.  https://doi.org/10.1177/00220345940730080201.CrossRefGoogle Scholar
  15. 15.
    Rai, B., S. Kharb, R. Jain, and S.C. Anand. 2008. Biomarkers of periodontitis in oral fluids. Journal of Oral Science 50 (1): 53–56.CrossRefGoogle Scholar
  16. 16.
    Kubota, T., M. Itagaki, C. Hoshino, M. Nagata, T. Morozumi, T. Kobayashi, R. Takagi, and H. Yoshie. 2008. Altered gene expression levels of matrix metalloproteinases and their inhibitors in periodontitis-affected gingival tissue. Journal of Periodontology 79 (1): 166–173.  https://doi.org/10.1902/jop.2008.070159.CrossRefGoogle Scholar
  17. 17.
    Kusano, K., C. Miyaura, M. Inada, T. Tamura, A. Ito, H. Nagase, K. Kamoi, and T. Suda. 1998. Regulation of matrix metalloproteinases (MMP-2, −3, −9, and −13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139 (3): 1338–1345.  https://doi.org/10.1210/endo.139.3.5818.CrossRefGoogle Scholar
  18. 18.
    Shi, J., E. Schmitt-Talbot, D.A. DiMattia, and R.G. Dullea. 2004. The differential effects of IL-1 and TNF-alpha on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells. Inflammation Research 53 (8): 377–389.  https://doi.org/10.1007/s00011-004-1271-3.CrossRefGoogle Scholar
  19. 19.
    Fujisaki, K., N. Tanabe, N. Suzuki, T. Kawato, O. Takeichi, O. Tsuzukibashi, M. Makimura, K. Ito, and M. Maeno. 2007. Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sciences 80 (14): 1311–1318.  https://doi.org/10.1016/j.lfs.2006.12.037.CrossRefGoogle Scholar
  20. 20.
    Suh, S.J., C.H. Kwak, K.H. Song, K.M. Kwon, T.W. Chung, S.H. Cho, Y.K. Kim, et al. 2012. Triple inhibitory activity of Cliona celata against TNF-alpha-induced matrix metalloproteinase-9 production via downregulated NF-kappaB and AP-1, enzyme activity, and migration potential. Inflammation 35 (2): 736–745.  https://doi.org/10.1007/s10753-011-9369-6.CrossRefGoogle Scholar
  21. 21.
    Guan, S.M., L. Shu, S.M. Fu, B. Liu, X.L. Xu, and J.Z. Wu. 2008. Prevotella intermedia induces matrix metalloproteinase-9 expression in human periodontal ligament cells. FEMS Microbiology Letters 283 (1): 47–53.  https://doi.org/10.1111/j.1574-6968.2008.01140.x.CrossRefGoogle Scholar
  22. 22.
    Sanchavanakit, N., W. Saengtong, J. Manokawinchoke, and P. Pavasant. 2015. TNF-alpha stimulates MMP-3 production via PGE2 signalling through the NF-kB and p38 MAPK pathway in a murine cementoblast cell line. Archives of Oral Biology 60 (7): 1066–1074.  https://doi.org/10.1016/j.archoralbio.2015.04.001.CrossRefGoogle Scholar
  23. 23.
    Wang, Y.L., H. He, Z.J. Liu, Z.G. Cao, X.Y. Wang, K. Yang, Y. Fang, M. Han, C. Zhang, and F.Y. Huo. 2015. Effects of TNF-alpha on Cementoblast differentiation, mineralization, and apoptosis. Journal of Dental Research 94 (9): 1225–1232.  https://doi.org/10.1177/0022034515590349.CrossRefGoogle Scholar
  24. 24.
    Heussen, C., and E.B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry 102 (1): 196–202.CrossRefGoogle Scholar
  25. 25.
    Nakagawa, H., and K. Sakata. 1986. Partial purification and characterization of exudate gelatinase in the acute phase of carrageenin-induced inflammation in rats. Journal of Biochemistry 100 (6): 1499–1506.CrossRefGoogle Scholar
  26. 26.
    Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25 (4): 402–408.  https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  27. 27.
    Lin, H.Y., B.R. Wells, R.E. Taylor, and H. Birkedal-Hansen. 1987. Degradation of type I collagen by rat mucosal keratinocytes. Evidence for secretion of a specific epithelial collagenase. The Journal of Biological Chemistry 262 (14): 6823–6831.Google Scholar
  28. 28.
    Ganguly, K., E. Rejmak, M. Mikosz, E. Nikolaev, E. Knapska, and L. Kaczmarek. 2013. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. The Journal of Biological Chemistry 288 (29): 20978–20991.  https://doi.org/10.1074/jbc.M113.457903.CrossRefGoogle Scholar
  29. 29.
    Martin, G., P. Bogdanowicz, F. Domagala, H. Ficheux, and J.P. Pujol. 2003. Rhein inhibits interleukin-1 beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappa B and AP-1 in chondrocytes cultured in hypoxia: a potential mechanism for its disease-modifying effect in osteoarthritis. Inflammation 27 (4): 233–246.CrossRefGoogle Scholar
  30. 30.
    Van den Steen, P.E., B. Dubois, I. Nelissen, P.M. Rudd, R.A. Dwek, and G. Opdenakker. 2002. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology 37 (6): 375–536.  https://doi.org/10.1080/10409230290771546.CrossRefGoogle Scholar
  31. 31.
    Liang, K.C., C.W. Lee, W.N. Lin, C.C. Lin, C.B. Wu, S.F. Luo, and C.M. Yang. 2007. Interleukin-1beta induces MMP-9 expression via p42/p44 MAPK, p38 MAPK, JNK, and nuclear factor-kappaB signaling pathways in human tracheal smooth muscle cells. Journal of Cellular Physiology 211 (3): 759–770.  https://doi.org/10.1002/jcp.20992.CrossRefGoogle Scholar
  32. 32.
    Wu, C.Y., H.L. Hsieh, C.C. Sun, C.P. Tseng, and C.M. Yang. 2008. IL-1 beta induces proMMP-9 expression via c-Src-dependent PDGFR/PI3K/Akt/p300 cascade in rat brain astrocytes. Journal of Neurochemistry 105 (4): 1499–1512.  https://doi.org/10.1111/j.1471-4159.2008.05318.x.CrossRefGoogle Scholar
  33. 33.
    Lin, C.C., C.T. Kuo, C.Y. Cheng, C.Y. Wu, C.W. Lee, H.L. Hsieh, I.T. Lee, and C.M. Yang. 2009. IL-1 beta promotes A549 cell migration via MAPKs/AP-1- and NF-kappaB-dependent matrix metalloproteinase-9 expression. Cellular Signalling 21 (11): 1652–1662.  https://doi.org/10.1016/j.cellsig.2009.07.002.CrossRefGoogle Scholar
  34. 34.
    Yasumitsu, H., K. Miyazaki, F. Umenishi, N. Koshikawa, and M. Umeda. 1992. Comparison of extracellular matrix-degrading activities between 64-kDa and 90-kDa gelatinases purified in inhibitor-free forms from human schwannoma cells. Journal of Biochemistry 111 (1): 74–80.CrossRefGoogle Scholar
  35. 35.
    Aimes, R.T., and J.P. Quigley. 1995. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. The Journal of Biological Chemistry 270 (11): 5872–5876.CrossRefGoogle Scholar
  36. 36.
    Patterson, M.L., S.J. Atkinson, V. Knauper, and G. Murphy. 2001. Specific collagenolysis by gelatinase a, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Letters 503 (2–3): 158–162.CrossRefGoogle Scholar
  37. 37.
    Yan, C., and D.D. Boyd. 2007. Regulation of matrix metalloproteinase gene expression. Journal of Cellular Physiology 211 (1): 19–26.  https://doi.org/10.1002/jcp.20948.CrossRefGoogle Scholar
  38. 38.
    Huhtala, P., L.T. Chow, and K. Tryggvason. 1990. Structure of the human type IV collagenase gene. The Journal of Biological Chemistry 265 (19): 11077–11082.Google Scholar
  39. 39.
    Huhtala, P., L. Chow, T. Shows, and K. Tryggvason. 1992. Structure of the human 70 K type IV collagenase gene and assignment of the gene to the q21 region of chromosome 16. Matrix Supplement 1: 84.Google Scholar
  40. 40.
    Tseng, H.C., I.T. Lee, C.C. Lin, P.L. Chi, S.E. Cheng, R.H. Shih, L.D. Hsiao, and C.M. Yang. 2013. IL-1beta promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-kappaB- and AP-1-dependent pathways. PLoS One 8 (3): e57955.  https://doi.org/10.1371/journal.pone.0057955.CrossRefGoogle Scholar
  41. 41.
    Cargnello, M., and P.P. Roux. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews 75 (1): 50–83.  https://doi.org/10.1128/mmbr.00031-10.CrossRefGoogle Scholar
  42. 42.
    Wu, C.Y., H.L. Hsieh, M.J. Jou, and C.M. Yang. 2004. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. Journal of Neurochemistry 90 (6): 1477–1488.  https://doi.org/10.1111/j.1471-4159.2004.02682.x.CrossRefGoogle Scholar
  43. 43.
    Huang, Q., F. Lan, X. Wang, Y. Yu, X. Ouyang, F. Zheng, J. Han, Y. Lin, Y. Xie, F. Xie, W. Liu, X. Yang, H. Wang, L. Dong, L. Wang, and J. Tan. 2014. IL-1beta-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9. Molecular Cancer 13: 18.  https://doi.org/10.1186/1476-4598-13-18.CrossRefGoogle Scholar
  44. 44.
    Karin, M. 1996. The regulation of AP-1 activity by mitogen-activated protein kinases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 351 (1336): 127–134.  https://doi.org/10.1098/rstb.1996.0008.CrossRefGoogle Scholar
  45. 45.
    Van den Steen, P.E., P. Proost, D.D. Brand, A.H. Kang, J. Van Damme, and G. Opdenakker. 2004. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry 43 (33): 10809–10816.  https://doi.org/10.1021/bi0493665.CrossRefGoogle Scholar
  46. 46.
    Havemose-Poulsen, A., P. Holmstrup, K. Stoltze, and H. Birkedal-Hansen. 1998. Dissolution of type I collagen fibrils by gingival fibroblasts isolated from patients of various periodontitis categories. Journal of Periodontal Research 33 (5): 280–291.CrossRefGoogle Scholar
  47. 47.
    Tsai, C.L., W.C. Chen, I.T. Lee, P.L. Chi, S.E. Cheng, and C.M. Yang. 2014. C-Src-dependent transactivation of PDGFR contributes to TNF-alpha-induced MMP-9 expression and functional impairment in osteoblasts. Bone 60: 186–197.  https://doi.org/10.1016/j.bone.2013.12.014.CrossRefGoogle Scholar
  48. 48.
    Zijlstra, A., R.T. Aimes, D. Zhu, K. Regazzoni, T. Kupriyanova, M. Seandel, E.I. Deryugina, and J.P. Quigley. 2004. Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). The Journal of Biological Chemistry 279 (26): 27633–27645.  https://doi.org/10.1074/jbc.M313617200.CrossRefGoogle Scholar
  49. 49.
    Hu, J., P.E. Van den Steen, Q.X. Sang, and G. Opdenakker. 2007. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature Reviews. Drug Discovery 6 (6): 480–498.  https://doi.org/10.1038/nrd2308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan UniversityWuhanChina
  2. 2.Department of Orthodontics, School and Hospital of StomatologyWuhan UniversityWuhanChina

Personalised recommendations