Hyperfine Interactions

, 241:10 | Cite as

On a hyperfine interaction in ε-Fe

  • Dimitrios BessasEmail author
  • Ilya Sergueev
  • Konstantin Glazyrin
  • Cornelius Strohm
  • Ilya Kupenko
  • Daniel G. Merkel
  • Aleksandr I. Chumakov
  • Rudolf Rüffer
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China


We explore alternative ways to Mössbauer spectroscopy such as nuclear forward scattering of synchrotron radiation, and synchrotron radiation perturbed angular correlation spectroscopy to reveal the elusive and long-sought hyperfine interactions in ε-Fe. We indicate that synchrotron radiation perturbed angular correlation spectroscopy is the most viable method.


ε-Fe Hexaferrum High pressure Hyperfine interactions Mössbauer spectroscopy Nuclear forward scattering Synchrotron radiation pertubed angular correlation 



The European Synchrotron Radiation Facility is acknowledged for beamtime provision at the Nuclear Resonance beamline ID18. We thank Mr. J.-P. Celse for technical assistance during the experiment at ID18 and Prof. Leonid Dubrovinsky for providing the diamond anvil cells.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Kantor, I., Prakapenka, V., Kantor, A., Dera, P., Kurnosov, A., Sinogeikin, S., Dubrovinskaia, N., Dubrovinsky, L.: BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 83, 125102 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Rüffer, R., Chumakov, A.I.: Nuclear Resonance Beamline at ESRF. Hyperfine Interact. 97–98, 589 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Potapkin, V., Chumakov, A.I., Smirnov, G.V., Celse, J.P., Rüffer, R., McCammon, C., Dubrovinsky, L.: The 57Fe synchrotron Mössbauer source at the ESRF. J. Synchrotron Radiat. 19, 559 (2012)CrossRefGoogle Scholar
  4. 4.
    Prescher, C., McCammon, C., Dubrovinsky, L.: MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Crystallogr. 45, 329 (2012)CrossRefGoogle Scholar
  5. 5.
    Hastings, J.B., Siddons, D.P., van Bürck, U., Hollatz, R., Bergmann, U.: Mössbauer spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    van Bürck, U., Siddons, D.P., Hastings, J.B., Bergmann, U., Hollatz, R.: Nuclear forward scattering of synchrotron radiation. Phys. Rev. B 46, 6207 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Baron, A.Q.R., Chumakov, A.I., Rüffer, R., Grünsteudel, H., Grünsteudel, H. F., Leupold, O.: Single-nucleus quantum beats excited by synchrotron radiation. Europhys. Lett. 34, 331 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Soares, J.C., Krien, K., Bibiloni, A.G., Freitag, K., Vianden, R.: Determination of the quadrupole splitting of the first excited state of 119Sn in β-tin by the e - γ TDPAC technique. Phys. Lett. A 45, 465 (1973)ADSCrossRefGoogle Scholar
  9. 9.
    Hohenemser, C., Erno, R., Benski, H.C., Lehr, J.: Time-differential perturbed angular-correlation experiment for 57Fe in a Ni host, and a comparison with the Mössbauer effect. Phys. Rev. 184, 298 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Sergueev, I., van Bürck, U., Chumakov, A.I., Asthalter, T., Smirnov, G.V., Franz, H., Rüffer, R., Petry, W.: Synchrotron-radiation-based perturbed angular correlations used in the investigation of rotational dynamics in soft matter. Phys. Rev. B 73, 024203 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Sergueev, I., Leupold, O., Wille, H.-C., Roth, T., Chumakov, A.I., Rüffer, R.: Hyperfine interactions in 61Ni with synchrotron-radiation-based perturbed angular correlations. Phys. Rev. B 78, 214436 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Chumakov, A.I., Metge, J., Baron, A.Q.R., Rüffer, R., Shvyd’ko, Yu.V., Grünsteudel, H., Grünsteudel, H.F.: Radiation trapping in nuclear resonant scattering of X-rays. Phys. Rev. B 56, R8455 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Adams, B., Aeppli, G., Allison, T., Baron, A.Q.R., Bucksbaum, P., Chumakov, A.I., Corder, C., Cramer, S.P., DeBeer, S., Ding, Y., Evers, J., Frisch, J., Fuchs, M., Grübel, G., Hastings, J.B., Heyl, C.M., Holberg, L., Huang, Z., Ishikawa, T., Kaldun, A., Kim, K.-J., Kolodziej, T., Krzywinski, J., Li, Z., Liao, W.-T., Lindberg, R., Madsen, A., Maxwell, T., Monaco, G., Nelson, K., Palffy, A., Porat, G., Qin, W., Raubenheimer, T., Reis, D.A., Röhlsberger, R., Santra, R., Schoenlein, R., Schünemann, V., Shpyrko, O., Shvyd’ko, Y. u., Shwartz, S., Singer, A., Sinha, S.K., Sutton, M., Wille, K., Tamasaku. H.-C., Yabashi, M., Ye, J., Zhu, D.: Scientific opportunities with an X-ray free-electron laser oscillator. arXiv:1903.09317 (2019)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ESRF - The European SynchrotronGrenobleFrance
  2. 2.Deutsches Elektronen-SynchrotronHamburgGermany
  3. 3.Institut für MineralogieUniversität MünsterMünsterGermany
  4. 4.Institute for Particle and Nuclear Physics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations