Advertisement

Hyperfine Interactions

, 240:121 | Cite as

Metastable iron carbide thin films produced by pulsed laser deposition of iron in methane atmosphere

  • Takumi FunabashiEmail author
  • Yoshio Kobayashi
  • Yasuhiro Yamada
Article
  • 10 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME2019), 1-6 September 2019, Dalian, China

Abstract

Metastable iron carbide thin films (χ-Fe5C2 and o-Fe7C3) were produced by pulsed laser deposition of Fe in a CH4 atmosphere, and their Mössbauer spectra and X-ray diffraction patterns were measured. Films consisting of amorphous Fe-C carbide were obtained when the substrate temperature was kept at 300 K during deposition, while crystalline films were produced for a substrate temperature of 573 K. The effect of CH4 pressure was investigated. Films produced below 4.0 Pa consisted of a combination of χ-Fe5C2 and α-Fe, and single-phase carbide films were produced at higher pressure: pure χ-Fe5C2 and o-Fe7C3 films were produced at 4.0 and 6.0 Pa, respectively. At 13 Pa, a film was produced consisting of o-Fe7C3 and paramagnetic amorphous Fe-C containing a large amount of C atoms. The film produced at the highest pressure of 40 Pa consisted solely of paramagnetic amorphous Fe-C.

Keywords

Iron carbide Thin films Pulsed laser deposition Mössbauer spectroscopy 

Notes

References

  1. 1.
    Xu, K., Sun, B., Lin, J., Wen, W., Pei, Y., Yan, S., Qiao, M., Zhang, X., Zong, B.: ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst. Nat. Commun. 5, 1–8 (2015)Google Scholar
  2. 2.
    Yang, C., Zhao, H., Ma, D.: Fe5C2 Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer–Tropsch Synthesis. J. Am. Chem. Soc. 134, 15814–15821 (2012)CrossRefGoogle Scholar
  3. 3.
    de Smit, E., Cinquini, F., Beale, A.M., Safonova, O.V., van Beek, W., Sautet, P., Weckhuysen, B.M.: Stability and Reactivity of ϵ−χ−θ Iron Carbide Catalyst Phases in Fischer−Tropsch Synthesis: Controlling μC. J. Am. Chem. Soc. 132, 14928–14941 (2010)CrossRefGoogle Scholar
  4. 4.
    Chipman, J.: Thermodynamics and phase diagram of the Fe-C system. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 3, 55–64 (1972)CrossRefGoogle Scholar
  5. 5.
    Abhaya, K.: Datye, Yaming Jin, Linda Mansker, R. Thato Motjope, T. Humphrey Dlamini, Neil J. Coville: the nature of the active phase in iron Fischer-Tropsch catalysts. Stud. Surf. Sci. Catal. 130, 1139–1144 (2000)CrossRefGoogle Scholar
  6. 6.
    Prescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., McCammon, C., Mookherjee, M., Nakajima, Y., Miyajima, N., Sinmyo, R., Cerantola, V., Dubrovinskaia, N., Prakapenka, V., Ruffer, R., Chumakov, A., Hanfland, M.: High Poisson's ratio of Earth's inner core explained by carbon alloying. Nat. Geosci. 8, 220–223 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Lee, B.J.: A modified embedded-atom method interatomic potential for the Fe–C system. Acta Mater. 54, 701–711 (2006)CrossRefGoogle Scholar
  8. 8.
    Cusenza, S., Schaaf, P.: Formation and characterization of NaCl-type FeC. Mater. Lett. 63, 1445–1447 (2009)CrossRefGoogle Scholar
  9. 9.
    Datye, A.K., Jin, Y., Mansker, L., Motjope, R.T., Dlamini, T.H., Coville, N.J.: The nature of the active phase in iron Fischer-Tropsch catalysts. Stud. Surf. Sci. Catal. 130, 1139–1144 (2000)CrossRefGoogle Scholar
  10. 10.
    Yao, S., Yang, C., Zhao, H., Li, S., Wen, J.L., Hu, G., Li, W., Hou, Y., Ma, D.: Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nanoparticles. J. Phys. Chem. C. 121, 5154–5160 (2017)CrossRefGoogle Scholar
  11. 11.
    Baskakov, A.O., Lyubutin, I.S., Starchikov, S.S., Davydov, V.A., Kulikova, L.F., Egorova, T.B., Agafonov, V.N.: Mechanism of Transformation of Ferrocene into Carbon-Encapsulated Iron Carbide Nanoparticles at High Pressures and Temperatures. Inorg. Chem. 57, 14895–14903 (2018)CrossRefGoogle Scholar
  12. 12.
    Siriwardane, H., Pringle, O.A., Newkirk, J.W., James, W.J.: Microstructure of thin iron carbide films prepared in a glow discharge. Thin Solid Films. 279, 155–161 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Yamada, Y., Yoshida, H., Kouno, K., Kobayashi, Y.: Iron carbide films produced by laser deposition. J. Phys. Conf. Ser. 217, 012096 (2010)CrossRefGoogle Scholar
  14. 14.
    Le Caer, G., Dubois, J.M., Senateur, J.P.: Etude par spectrométrie Mössbauer des carbures de Fer Fe3C et Fe5C2. J. Solid State Chem. 19, 19–28 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    Bernas, H., Campbell, I.A.: Electronic exchange and the Mössbauer effect in iron-based interstitial compounds. J. Phys. Chem. Solids Pergamon Press. 28, 17–24 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, X., Zhao, S., Meng, Y., Peng, Q., Dearden, A.K., Huo, C., Yang, Y., Li, Y., Wen, X.: Mössbauer spectroscopy of Iron carbides: from prediction to experimental confirmation. Sci. Rep. 6, 26184 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Yamada, Y., Yoshida, H., Kobayashi, Y.: Laser deposition of iron on graphite substrates. Hyperfine Interact. 198, 55–59 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryTokyo University of ScienceTokyoJapan
  2. 2.Graduate School of Informatics and EngineeringThe University of Electro-CommunicationsTokyoJapan
  3. 3.Nishina Center for Accelerator-Based ScienceRIKENSaitamaJapan

Personalised recommendations