Hyperfine Interactions

, 240:77 | Cite as

57Fe Mössbauer spectra from fluorinated phases of Fe0.50M0.50(M = Co,Mg)Sb2O4

  • Frank J. BerryEmail author
  • Benjamin P. de Laune
  • Colin Greaves
  • Michael F. Thomas
  • Jean-Claude Jumas
Open Access
Part of the following topical collections:
  1. Proceedings of the 5th Mediterranean Conference on the Applications of the Mössbauer Effect (MECAME 2019) and 41st Workshop of the French-speaking Group of Mössbauer Spectroscopy (GFSM 2019), Montpellier, France, 19-23 May 2019


Fluorinated phases formed by reaction of Fe0.5Co0.5Sb2O4 and Fe0.5Mg0.5Sb2O4 with gaseous fluorine have been examined by 57 Fe Mössbauer spectroscopy between 298 and 5 K. The degree of oxidation of Fe2+to Fe3 +has been used to quantify the amount of fluorine incorporated within the channels of the schafarzikite-related structure and enable the evaluation of the compositions as Fe0.5Co0.5Sb2O4F0.41 and Fe0.5Mg0.5Sb2O4F0.31. The multiplicity of components observed in the spectra recorded in the paramagnetic regime can be related to the number of near neighbour fluoride ions which lie in the channels at the same value of the crystal z- coordinate as the iron ions. Comparison of the magnetically ordered spectra recorded at lower temperatures from Co0.5Fe0.5Sb2O4F0.41 with those recorded previously from FeSb2O4 indicates that the insertion of fluoride ions into the channels of the structure does not affect the angle between the EFG and magnetic hyperfine field.


Schafarzikite Fluorinated oxides Mössbauer spectroscopy 



We thank the Engineering and Science Research Council for financial support of this research (EPSRC EP/L014114/1).


  1. 1.
    Chevalier, B., Tressaud, A., Lepine, B., Amine, K., Dance, J.M., Lozano, L., Hickey, E., Etourneau, J.: Stabilization of a new superconducting phase by low temperature fluorination of La2CuO4. Physica C. 167, 97–101 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Slater, P.R., Driscoll, L.: Photonic and Electronic Properties of Fluoride Materials. In: Tressaud, A. (ed.) Poppelmeier, Progress in Fluorine Science Series Vol 1, pp. 401–421. Elsevier, Amsterdam (2016) Modification of Magnetic and Electronic Properties, in Particular Superconductivity, by Low Temperature Insertion of Fluorine into OxidesGoogle Scholar
  3. 3.
    De Laune, B.P., Rees, G.J., Marco, J., Hah, H.-Y., Johnson, C.E., Johnson, J.A., Berry, F.J., Hanna, J.V., Greaves, C.: Topotactic Fluorine Insertion into the Channels of FeSb2O4-Related Materials. Inorg. Chem. 56, 10078–10089 (2017)CrossRefGoogle Scholar
  4. 4.
    Gavarri, J.R., Vigouroux, J.P., Calvarin, G., Hewat, A.W.: Structure de SnPb2O4 à quatre températures: relation entre dilatation et agitation thermiques. J. Solid State Chem. 36, 81–90 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    Fischer, R., Pertlik, F.: Tschermaks Miner. Petrogr. Mitt. 22, 236–241 (1975)CrossRefGoogle Scholar
  6. 6.
    Gonzalo, J.A., Cox, D.E., Shirane, G.: The Magnetic Structure of FeSb2O4. Phys. Rev. 147, 415–418 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    Chater, R., Gavarri, J.R., Hewat, A.W.: Structures isomorphes MeX2O4—Evolution structurale entre 2 K et 300 K de l'antimonite FeSb2O4: Elasticité et ordre magnétique anisotropes. J. Solid State Chem. 60, 78–86 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    Varret, F., Imbert, P., Gerard, A., Hartmann-Boutron, F.: Etude de FeSb2O4 par effet Mössbauer. Solid State Commun. 6, 889–892 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    Pettit, G., Meder, M.R.: 57 Fe Mossbauer spectra from FeSb2O4 Hyperfine Interact. 5, 323 (1978)Google Scholar
  10. 10.
    Bayliss, R.D., Berry, F.J., de Laune, B.P., Greaves, C., Helgason, O., Marco, J.F., Thomas, M.F., Vergara, L., Whitaker, M.J.: Magnetic interactions in ferrous antimonite, FeSb2O4, and some derivatives J. Phys. Condens. Matter. 24, 276001 (2012)Google Scholar
  11. 11.
    Eibschutz, M., Ganiel, U.: Mössbauer studies of paramagnetic FeSb2O4. Solid State Commun. 6, 775–777 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    Tammann, G.: Chemische Reaktionen in pulverförmigen Gemengen zweier Kristallarten. Z. Anorg. Allg. Chem. 149, 21–34 (1925)CrossRefGoogle Scholar
  13. 13.
    Koyama, E., Nakai, I., Nagashima, K.: Hydrothermal synthesis of a single crystal of FeSb2O4 and isostructural compounds Nippon Kagaku Kaishi. 6, 793–795 (1979)Google Scholar
  14. 14.
    Gavarri, J.R., Calvarin, G., Chardon, B.: Composés isomorphes MeX2O4: Dilatation thermique anisotrope et ordre magnétique dans MnSb2O4. J. Solid State Chem. 47, 132–142 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    Witteveen, H.T.: Magnetic susceptibility of NiAs2O4 and NiSb2O4 Solid State Commun. 9, 1313–1315 (1971)Google Scholar
  16. 16.
    Ståhl, S.: The crystal structure of ZnSb2O4 and isomorphous compounds Ark. Khem. Min. Geol. 17B, 1–7 (1943)Google Scholar
  17. 17.
    Atanasova, M.T., Strydom, A.M., Schutte, C.J..H., Prinsloo, L.C., Focke, W.W.: Crystal structure and magnetic properties of CuSb2O4. J. Mater. Sci. 49, 3497–3510 (2014)Google Scholar
  18. 18.
    Cumby, J., de Laune, B.P., Greaves, C.: The structures and magnetic properties of FexCo1-xSb2O4 and MnxCo1-xSb2O4 J. Mater. Chem. C. 4, 201–208 (2016)Google Scholar
  19. 19.
    Berry, F.J., de Laune, B.P., Greaves, C., Hah, H.-Y., Johnson, C., Johnson, J.A., Kameli, S., Whitaker, M.J., Marco, J.F., Thomas, M.F., Whitaker, M.J.: Magnetic interactions in Fe1-xMxSb2O4 (M=Mg,Co) deduced from Mossbauer spectroscopy Hyperfine Interact. 239, 31–39 (2018)Google Scholar
  20. 20.
    de Laune, B.P., Whitaker, M.J., Marco, J.F., Thomas, M.F., Berry, F.J., Lees, M.R., Greaves, C.: Synthesis and magnetic characterization of Fe1-xMgxSb2O4 (x=0.25, 0.50, 0.75) and their oxygen-excess derivatives J. Mater. Chem. C. 5, 4985 (2017)Google Scholar
  21. 21.
    de Laune, B.P., Rees, G.J., Whitaker, M.J., Hah, H.-Y., Johnson, C., Johnson, J.A., Brown, D.E., Tucker, M.G., Hansen, T.C., Berry, F.J., Hanna, J.V., Greaves, C.: Oxygen insertion reactions within the 1-D channels of phases related to FeSb2O4 Inorg. Chem. 56, 594 (2017)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of ChemistryThe University of BirminghamBirminghamUK
  2. 2.Department of PhysicsUniversity of LiverpoolLiverpoolUK
  3. 3.Institut Charles Gerhard (UMR 5253)Universite MontpellierMontpellier Cedex 5France

Personalised recommendations