Hyperfine Interactions

, 240:74 | Cite as

Effect of quadrupole deformation & temperature on bubble structure in N = 14 nuclei

  • G. SaxenaEmail author
  • M. Kumawat
  • B. K. Agrawal
  • M. Aggarwal
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019


The anti-bubble effect of the quadrupole deformation in the light nuclei is investigated by applying the relativistic mean-field (RMF) plus state dependent BCS approach. We perform a systematic study of N = 14 isotonic chain to understand the influence of deformation on the occupancy and depletion fraction (D.F. = (ρmax - ρc)max, where ρmax and ρc are maximum and central densities, respectively). The quenching effect of deformation is found very predominant in light nuclei. In view of the fact that apart from deformation, temperature is also expected to hinder or rather completely wash out the bubble effect, we investigate the interesting role of deformation and temperature together in the quenching of proton bubble in the well deformed 24Ne and 32Ar.


Relativistic mean-field plus BCS approach Bubble nuclei Depletion fraction Quadrupole deformation 



G. Saxena and M. Aggarwal acknowledge the support by SERB for YSS/2015/000952 and WOS-A schemes respectively.


  1. 1.
    Todd-Rutel, B.G., Piekarewicz, J., Cottle, P.D.: Spin-orbit splitting in low-jneutron orbits and proton densities in the nuclear interior. Phys. Rev. C 69, 021301 (2004). ADSCrossRefGoogle Scholar
  2. 2.
    Grasso, M., Ma, Z.Y., Khan, E., Margueron, J., Van Giai, N.: Evolution of the protonsdstates in neutron-rich Ca isotopes. Phys. Rev. C 76, 044319 (2007). ADSCrossRefGoogle Scholar
  3. 3.
    Khan, E., Grasso, M., Margueron, J., Van Giai, N.: Detecting bubbles in exotic nuclei. Nucl. Phys. A 800, 37–46 (2008). ADSCrossRefGoogle Scholar
  4. 4.
    Wang, Y.Z., Gu, J.Z., Zhang, X.Z., Dong, J.M.: Tensor Effect on Bubble Nuclei. Chin. Phys. Lett. 28, 10 (2011). CrossRefGoogle Scholar
  5. 5.
    Wang, Y.Z., Gu, J.Z., Zhang, X.Z., Dong, J.M.: Tensor effects on the protonsdstates in neutron-rich Ca isotopes and bubble structure of exotic nuclei. Phys. Rev. C 84, 044333 (2011). ADSCrossRefGoogle Scholar
  6. 6.
    Grasso, M., Gaudefroy, L., Khan, E., Niksic, T., Piekarewicz, J., Sorlin, O., Giai, N.V., Vretenar, D.: Nuclear “bubble” structure inSi34. Phys. Rev. C 79, 034318 (2009). ADSCrossRefGoogle Scholar
  7. 7.
    Yao, J.M., Baroni, S., Bender, M., Heenen, P.H.: Beyond-mean-field study of the possible “bubble” structure of34Si. Phys. Rev. C 86, 014310 (2012). ADSCrossRefGoogle Scholar
  8. 8.
    Schuetrumpf, B., Nazarewicz, W., Reinhard, P.G.: Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96(2), 024306 (2017). ADSCrossRefGoogle Scholar
  9. 9.
    Sobiczewski, A., Pomorski, K.: Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58(1), 292 (2007). URL Scholar
  10. 10.
    Decharg, J., Berger, J.F., Dietrich, K., Weiss, M.S.: Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys. Lett. B 451, 275–282 (1999). ADSCrossRefGoogle Scholar
  11. 11.
    Singh, S.K., Ikram, M., Patra, S.K.: Ground state properties and bubble structure of synthesized superheavy nuclei. Int. J. Mod. Phys. E 22, 135001 (2012). CrossRefGoogle Scholar
  12. 12.
    Ikram, M., Singh, S.K., Usmani, A.A., Patra, S.K.: A relativistic mean field study of multi-strange system. Int. J. Mod. Phys. E 23(09), 1450052 (2014). ADSCrossRefGoogle Scholar
  13. 13.
    Bender, M., Heenen, P.H.: Structure of superheavy nuclei. J. Phys. Conf. Ser. 420, 0120025 (2013). CrossRefGoogle Scholar
  14. 14.
    Campi, X., Sprung, D.W.L.: Possible bubble nuclei -36Ar and 200Hg. Phys. Lett. 46B, 291–295 (1973). ADSCrossRefGoogle Scholar
  15. 15.
    Mutschler, A., Lemasson, A., Sorlin, O., Bazin, D., Borcea, C., Borcea, R., Dombrádi, Z., Ebran, J.P., Gade, A., Iwasaki, H., Khan, E., Lepailleur, A., Recchia, F., Roger, T., Rotaru, F., Sohler, D., Stanoiu, M., Stroberg, S.R., Tostevin, J.A., Vandebrouck, M., Weisshaar, D., Wimmer, K.: A proton density bubble in the doubly magic 34Si nucleus. Nat. Phys. 13, 152–156 (2017). CrossRefGoogle Scholar
  16. 16.
    Li, J.J., Long, W.H., Song, J.L., Zhao, Q.: Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 93(5), 054312 (2016). ADSCrossRefGoogle Scholar
  17. 17.
    Duguet, T., Som, V., Lecluse, S., Barbieri, C., Navrtil, P.: Ab initiocalculation of the potential bubble nucleusSi34. Phys. Rev. C 95(3), 034319 (2017). ADSCrossRefGoogle Scholar
  18. 18.
    Phuc, L.T., Hung, N.Q., Dang, N.D.: Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach. Phys. Rev. C 97(2), 024331 (2018). ADSCrossRefGoogle Scholar
  19. 19.
    Saxena, G., Kumawat, M., Kaushik, M., Singh, U.K., Jain, S.K., Singh, S.S., Aggarwal, M.: Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26(11), 1750072 (2017). ADSCrossRefGoogle Scholar
  20. 20.
    Saxena, G., Kumawat, M., Kaushik, M., Jain, S.K., Aggarwal, M.: Bubble structure in magic nuclei. Phys. Lett. B 788, 1–6 (2019). ADSCrossRefGoogle Scholar
  21. 21.
    Saxena, G., Kumawat, M., Agrawal, B.K., Aggarwal, M.: A systematic study of the factors affecting central depletion in nuclei. J. Phys. G: Nucl. Part. Phys. 46, 065105 (2019). ADSCrossRefGoogle Scholar
  22. 22.
    Saxena, G., Kumawat, M., Agrawal, B.K., Aggarwal, M.: Anti-bubble effect of temperature & deformation: A systematic study for nuclei across all mass regions between A = 20–300. Phys. Lett. B789, 323–328 (2019). ADSCrossRefGoogle Scholar
  23. 23.
    Yao, J.M., Mei, H., Li, Z.P.: Does a proton “bubble” structure exist in the low-lying states of 34Si? Phys. Lett. B723, 459–463 (2013). ADSCrossRefGoogle Scholar
  24. 24.
    Wu, X.Y., Yao, J.M., Li, Z.P.: Low-energy structure and anti-bubble effect of dynamical correlations in46Ar. Phys. Rev. C89(1), 017304 (2014). ADSCrossRefGoogle Scholar
  25. 25.
    Nakada, H., Sugiura, K., Margueron, J.: Tensor-force effects on single-particle levels and proton bubble structure around theZorN=20magic number. Phys. Rev. C87, 067305 (2013). ADSCrossRefGoogle Scholar
  26. 26.
    Sugahara, Y., Toki, H.: Nucl. Phys. A579, 557 (1994). ADSCrossRefGoogle Scholar
  27. 27.
    Singh, D., Saxena, G., Kaushik, M., Yadav, H.L., Toki, H.: Study of two-proton radioactivity within the relativistic mean-field plus bcs approach. Int. J. Mod. Phys. E21, 9 (2012). CrossRefGoogle Scholar
  28. 28.
    Yadav, H.L., Kaushik, M., Toki, H.: Description of drip-line nuclei within the relativistic mean field plus BCS approach. Int. J. Mod. Phys. E13, 647–696 (2004). ADSCrossRefGoogle Scholar
  29. 29.
    Geng, L.S., Toki, H., Sugimoto, S., Meng, J.: Relativistic Mean Field Theory for Deformed Nuclei with Pairing Correlations. Prog. Theor. Phys. 110, 921–936 (2003). ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Gambhir, Y.K., Ring, P., Thimet, A.: Relativistic mean field theory for finite nuclei. Ann. Phys. 198, 132–179 (1990). ADSCrossRefGoogle Scholar
  31. 31.
    Flocard, H., Quentin, P., Kerman, A.K., Vautherin, D.: Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A203, 433–472 (1973). ADSCrossRefGoogle Scholar
  32. 32.
    Saxena, G., Kumawat, M., Kaushik, M., Jain, S.K., Aggarwal, M.: Two-proton radioactivity with 2p halo in light mass nuclei A = 18–34. Phys. Lett. B775, 126–129 (2017). ADSCrossRefGoogle Scholar
  33. 33.
    Dobaczewski, J., Flocard, H., Treiner, J.: Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A422, 103–139 (1984). ADSCrossRefGoogle Scholar
  34. 34.
    Bertsch, G.F., Esbensen, H.: Pair correlations near the neutron drip line. Ann. Phys. 209, 327–363 (1991). ADSCrossRefGoogle Scholar
  35. 35.
    Bender, M., Rutz, K., Reinhard, P.G., Maruhn, J.A.: Eur. Phys. J. A7, 467 (2000). ADSCrossRefGoogle Scholar
  36. 36.
    Lalazissis, G.A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A.V., Ring, P.: The effective force NL3 revisited. Phys. Lett. B671, 36–41 (2009). ADSCrossRefGoogle Scholar
  37. 37.
    Long, W.h., Meng, J., Van Giai, N., Zhou, S.G.: New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys. Rev. C69, 034319 (2004).
  38. 38.
    Shukla, A., berg, S.: Phys. Rev. C89(1), 014329 (2014). ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment Women Engineering CollegeAjmerIndia
  2. 2.Department of Physics, School of Basic SciencesManipal University JaipurJaipurIndia
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia
  5. 5.Department of PhysicsUniversity of MumbaiMumbaiIndia

Personalised recommendations