Advertisement

Hyperfine Interactions

, 240:74 | Cite as

Effect of quadrupole deformation & temperature on bubble structure in N = 14 nuclei

  • G. SaxenaEmail author
  • M. Kumawat
  • B. K. Agrawal
  • M. Aggarwal
Article
  • 16 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Abstract

The anti-bubble effect of the quadrupole deformation in the light nuclei is investigated by applying the relativistic mean-field (RMF) plus state dependent BCS approach. We perform a systematic study of N = 14 isotonic chain to understand the influence of deformation on the occupancy and depletion fraction (D.F. = (ρmax - ρc)max, where ρmax and ρc are maximum and central densities, respectively). The quenching effect of deformation is found very predominant in light nuclei. In view of the fact that apart from deformation, temperature is also expected to hinder or rather completely wash out the bubble effect, we investigate the interesting role of deformation and temperature together in the quenching of proton bubble in the well deformed 24Ne and 32Ar.

Keywords

Relativistic mean-field plus BCS approach Bubble nuclei Depletion fraction Quadrupole deformation 

Notes

Acknowledgements

G. Saxena and M. Aggarwal acknowledge the support by SERB for YSS/2015/000952 and WOS-A schemes respectively.

References

  1. 1.
    Todd-Rutel, B.G., Piekarewicz, J., Cottle, P.D.: Spin-orbit splitting in low-jneutron orbits and proton densities in the nuclear interior. Phys. Rev. C 69, 021301 (2004).  https://doi.org/10.1103/PhysRevC.69.021301 ADSCrossRefGoogle Scholar
  2. 2.
    Grasso, M., Ma, Z.Y., Khan, E., Margueron, J., Van Giai, N.: Evolution of the protonsdstates in neutron-rich Ca isotopes. Phys. Rev. C 76, 044319 (2007).  https://doi.org/10.1103/PhysRevC.76.044319 ADSCrossRefGoogle Scholar
  3. 3.
    Khan, E., Grasso, M., Margueron, J., Van Giai, N.: Detecting bubbles in exotic nuclei. Nucl. Phys. A 800, 37–46 (2008).  https://doi.org/10.1016/j.nuclphysa.2007.11.012 ADSCrossRefGoogle Scholar
  4. 4.
    Wang, Y.Z., Gu, J.Z., Zhang, X.Z., Dong, J.M.: Tensor Effect on Bubble Nuclei. Chin. Phys. Lett. 28, 10 (2011).  https://doi.org/10.1088/0256-307X/28/10/102101 CrossRefGoogle Scholar
  5. 5.
    Wang, Y.Z., Gu, J.Z., Zhang, X.Z., Dong, J.M.: Tensor effects on the protonsdstates in neutron-rich Ca isotopes and bubble structure of exotic nuclei. Phys. Rev. C 84, 044333 (2011).  https://doi.org/10.1103/PhysRevC.84.044333 ADSCrossRefGoogle Scholar
  6. 6.
    Grasso, M., Gaudefroy, L., Khan, E., Niksic, T., Piekarewicz, J., Sorlin, O., Giai, N.V., Vretenar, D.: Nuclear “bubble” structure inSi34. Phys. Rev. C 79, 034318 (2009).  https://doi.org/10.1103/PhysRevC.79.034318 ADSCrossRefGoogle Scholar
  7. 7.
    Yao, J.M., Baroni, S., Bender, M., Heenen, P.H.: Beyond-mean-field study of the possible “bubble” structure of34Si. Phys. Rev. C 86, 014310 (2012).  https://doi.org/10.1103/PhysRevC.86.014310 ADSCrossRefGoogle Scholar
  8. 8.
    Schuetrumpf, B., Nazarewicz, W., Reinhard, P.G.: Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96(2), 024306 (2017).  https://doi.org/10.1103/PhysRevC.96.024306 ADSCrossRefGoogle Scholar
  9. 9.
    Sobiczewski, A., Pomorski, K.: Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58(1), 292 (2007).  https://doi.org/10.1016/j.ppnp.2006.05.001 URL http://www.sciencedirect.com/science/article/pii/S0146641006000470.ADSCrossRefGoogle Scholar
  10. 10.
    Decharg, J., Berger, J.F., Dietrich, K., Weiss, M.S.: Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys. Lett. B 451, 275–282 (1999).  https://doi.org/10.1016/S0370-2693(99)00225-7 ADSCrossRefGoogle Scholar
  11. 11.
    Singh, S.K., Ikram, M., Patra, S.K.: Ground state properties and bubble structure of synthesized superheavy nuclei. Int. J. Mod. Phys. E 22, 135001 (2012).  https://doi.org/10.1142/S0218301313500018 CrossRefGoogle Scholar
  12. 12.
    Ikram, M., Singh, S.K., Usmani, A.A., Patra, S.K.: A relativistic mean field study of multi-strange system. Int. J. Mod. Phys. E 23(09), 1450052 (2014).  https://doi.org/10.1142/S0218301314500529 ADSCrossRefGoogle Scholar
  13. 13.
    Bender, M., Heenen, P.H.: Structure of superheavy nuclei. J. Phys. Conf. Ser. 420, 0120025 (2013).  https://doi.org/10.1088/1742-6596/420/1/012002 CrossRefGoogle Scholar
  14. 14.
    Campi, X., Sprung, D.W.L.: Possible bubble nuclei -36Ar and 200Hg. Phys. Lett. 46B, 291–295 (1973).  https://doi.org/10.1016/0370-2693(73)90121-4 ADSCrossRefGoogle Scholar
  15. 15.
    Mutschler, A., Lemasson, A., Sorlin, O., Bazin, D., Borcea, C., Borcea, R., Dombrádi, Z., Ebran, J.P., Gade, A., Iwasaki, H., Khan, E., Lepailleur, A., Recchia, F., Roger, T., Rotaru, F., Sohler, D., Stanoiu, M., Stroberg, S.R., Tostevin, J.A., Vandebrouck, M., Weisshaar, D., Wimmer, K.: A proton density bubble in the doubly magic 34Si nucleus. Nat. Phys. 13, 152–156 (2017).  https://doi.org/10.1038/nphys3916 CrossRefGoogle Scholar
  16. 16.
    Li, J.J., Long, W.H., Song, J.L., Zhao, Q.: Pseudospin-orbit splitting and its consequences for the central depression in nuclear density. Phys. Rev. C 93(5), 054312 (2016).  https://doi.org/10.1103/PhysRevC.93.054312 ADSCrossRefGoogle Scholar
  17. 17.
    Duguet, T., Som, V., Lecluse, S., Barbieri, C., Navrtil, P.: Ab initiocalculation of the potential bubble nucleusSi34. Phys. Rev. C 95(3), 034319 (2017).  https://doi.org/10.1103/PhysRevC.95.034319 ADSCrossRefGoogle Scholar
  18. 18.
    Phuc, L.T., Hung, N.Q., Dang, N.D.: Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach. Phys. Rev. C 97(2), 024331 (2018).  https://doi.org/10.1103/PhysRevC.97.024331 ADSCrossRefGoogle Scholar
  19. 19.
    Saxena, G., Kumawat, M., Kaushik, M., Singh, U.K., Jain, S.K., Singh, S.S., Aggarwal, M.: Implications of occupancy of 2s1/2 state in sd-shell within RMF+BCS approach. Int. J. Mod. Phys. E 26(11), 1750072 (2017).  https://doi.org/10.1142/S0218301317500720 ADSCrossRefGoogle Scholar
  20. 20.
    Saxena, G., Kumawat, M., Kaushik, M., Jain, S.K., Aggarwal, M.: Bubble structure in magic nuclei. Phys. Lett. B 788, 1–6 (2019).  https://doi.org/10.1016/j.physletb.2018.08.076 ADSCrossRefGoogle Scholar
  21. 21.
    Saxena, G., Kumawat, M., Agrawal, B.K., Aggarwal, M.: A systematic study of the factors affecting central depletion in nuclei. J. Phys. G: Nucl. Part. Phys. 46, 065105 (2019).  https://doi.org/10.1088/1361-6471/ab0853 ADSCrossRefGoogle Scholar
  22. 22.
    Saxena, G., Kumawat, M., Agrawal, B.K., Aggarwal, M.: Anti-bubble effect of temperature & deformation: A systematic study for nuclei across all mass regions between A = 20–300. Phys. Lett. B789, 323–328 (2019).  https://doi.org/10.1016/j.physletb.2018.10.062 ADSCrossRefGoogle Scholar
  23. 23.
    Yao, J.M., Mei, H., Li, Z.P.: Does a proton “bubble” structure exist in the low-lying states of 34Si? Phys. Lett. B723, 459–463 (2013).  https://doi.org/10.1016/j.physletb.2013.05.049 ADSCrossRefGoogle Scholar
  24. 24.
    Wu, X.Y., Yao, J.M., Li, Z.P.: Low-energy structure and anti-bubble effect of dynamical correlations in46Ar. Phys. Rev. C89(1), 017304 (2014).  https://doi.org/10.1103/PhysRevC.89.017304 ADSCrossRefGoogle Scholar
  25. 25.
    Nakada, H., Sugiura, K., Margueron, J.: Tensor-force effects on single-particle levels and proton bubble structure around theZorN=20magic number. Phys. Rev. C87, 067305 (2013).  https://doi.org/10.1103/PhysRevC.87.067305 ADSCrossRefGoogle Scholar
  26. 26.
    Sugahara, Y., Toki, H.: Nucl. Phys. A579, 557 (1994).  https://doi.org/10.1016/0375-9474(94)90923-7 ADSCrossRefGoogle Scholar
  27. 27.
    Singh, D., Saxena, G., Kaushik, M., Yadav, H.L., Toki, H.: Study of two-proton radioactivity within the relativistic mean-field plus bcs approach. Int. J. Mod. Phys. E21, 9 (2012).  https://doi.org/10.1142/S0218301312500760 CrossRefGoogle Scholar
  28. 28.
    Yadav, H.L., Kaushik, M., Toki, H.: Description of drip-line nuclei within the relativistic mean field plus BCS approach. Int. J. Mod. Phys. E13, 647–696 (2004).  https://doi.org/10.1142/S0218301304002375 ADSCrossRefGoogle Scholar
  29. 29.
    Geng, L.S., Toki, H., Sugimoto, S., Meng, J.: Relativistic Mean Field Theory for Deformed Nuclei with Pairing Correlations. Prog. Theor. Phys. 110, 921–936 (2003).  https://doi.org/10.1143/PTP.110.921 ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Gambhir, Y.K., Ring, P., Thimet, A.: Relativistic mean field theory for finite nuclei. Ann. Phys. 198, 132–179 (1990).  https://doi.org/10.1016/0003-4916(90)90330-Q ADSCrossRefGoogle Scholar
  31. 31.
    Flocard, H., Quentin, P., Kerman, A.K., Vautherin, D.: Nuclear deformation energy curves with the constrained Hartree-Fock method. Nucl. Phys. A203, 433–472 (1973).  https://doi.org/10.1016/0375-9474(73)90357-6 ADSCrossRefGoogle Scholar
  32. 32.
    Saxena, G., Kumawat, M., Kaushik, M., Jain, S.K., Aggarwal, M.: Two-proton radioactivity with 2p halo in light mass nuclei A = 18–34. Phys. Lett. B775, 126–129 (2017).  https://doi.org/10.1016/j.physletb.2017.10.055 ADSCrossRefGoogle Scholar
  33. 33.
    Dobaczewski, J., Flocard, H., Treiner, J.: Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A422, 103–139 (1984).  https://doi.org/10.1016/0375-9474(84)90433-0 ADSCrossRefGoogle Scholar
  34. 34.
    Bertsch, G.F., Esbensen, H.: Pair correlations near the neutron drip line. Ann. Phys. 209, 327–363 (1991).  https://doi.org/10.1016/0003-4916(91)90033-5 ADSCrossRefGoogle Scholar
  35. 35.
    Bender, M., Rutz, K., Reinhard, P.G., Maruhn, J.A.: Eur. Phys. J. A7, 467 (2000).  https://doi.org/10.1007/s100500050419 ADSCrossRefGoogle Scholar
  36. 36.
    Lalazissis, G.A., Karatzikos, S., Fossion, R., Pena Arteaga, D., Afanasjev, A.V., Ring, P.: The effective force NL3 revisited. Phys. Lett. B671, 36–41 (2009).  https://doi.org/10.1016/j.physletb.2008.11.070 ADSCrossRefGoogle Scholar
  37. 37.
    Long, W.h., Meng, J., Van Giai, N., Zhou, S.G.: New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys. Rev. C69, 034319 (2004).  https://doi.org/10.1103/PhysRevC.69.034319
  38. 38.
    Shukla, A., berg, S.: Phys. Rev. C89(1), 014329 (2014).  https://doi.org/10.1103/PhysRevC.89.014329 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment Women Engineering CollegeAjmerIndia
  2. 2.Department of Physics, School of Basic SciencesManipal University JaipurJaipurIndia
  3. 3.Saha Institute of Nuclear PhysicsKolkataIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia
  5. 5.Department of PhysicsUniversity of MumbaiMumbaiIndia

Personalised recommendations