Advertisement

Hyperfine Interactions

, 240:82 | Cite as

X-ray diffraction, Mössbauer spectroscopy, neutron diffraction, optical absorption and ab-initio calculation of magnetic process in orthorhombic YFexCr(1-x)O3 (0 ≤ x ≤ 1) compounds

  • Roberto Salazar-RodriguezEmail author
  • Domingo Aliaga-Guerra
  • Keith M. Taddei
Article
Part of the following topical collections:
  1. Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile

Abstract

YFexCr(1-x)O3 (0 ≤ x ≤ 1) compounds prepared by autocombustion were studied with X-ray and neutron powder diffraction, Mössbauer spectroscopy and ab-initio electronic structure calculations to try to understand the interplay of magnetic order and structural parameters as a function of doping in this multiferroic material. All samples exhibit the orthorhombic nuclear structure (space group symmetry Pnma) and the cell parameters vary continuously as a function of doping. In the neutron powder diffraction patterns it was observed that in addition to the Pnma nuclear structure peaks reflections are seen in all samples which arise from magnetic order. These peaks can be indexed using the nuclear unit cell indicating an ordering vector of k = (0,0,0). Using representational analysis and Rietveld refinements the magnetic structure was determined to be Pn’ma’ and the mean magnetic moment per transition metal atom was observed to decrease continuously from Fe to Cr. For compounds with x > 0.25 a weak ferromagnetic contribution is also present which is due to a small canting of the moments out of the basal plane. The Mössbauer spectra corroborate the NPD results with all samples showing single magnetic sextets at 4.2 K. The energy gap and the main direct interband transition of the endmember samples were obtained by optical absorption measurements. These optical data were analyzed with the help of DFT band structure calculation using the GGA-PBE + U approximation.

Keywords

Combustion method Preparation and characterization of YFexCr(1-x)O3 (0 ≤ x ≤ 1) Antiferromagnetism Weak ferromagnetism Mössbauer spectroscopy Neutron powder diffraction 

Notes

Acknowledgments

Prof. Dr. F. Wagner for his support in the measurement of the Mössbauer spectra from the Technische Universität München, Germany and Dr. Karla Santacruz G. from the Universidad de Sonora, Mexico for the TEM images. We also appreciate Prof. Manuel Hernández from the Universidad Nacional Autónoma de México (UNAM) for the optical absorption measurements. A portion of this research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

References

  1. 1.
    Sando, D., et al.: Nat. Mater. 12, 641–646 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Neusser, S., Grundler, D.: Magnonics: Spin Waves on the Nanoscale. Adv. Mater. 21, 2927–2932 (2009)CrossRefGoogle Scholar
  3. 3.
    Dahmani, A., et al.: Mat. Chem. and Phys. 77, 912 (2002)CrossRefGoogle Scholar
  4. 4.
    Serrao, C.R., Kundu, A.K., Krupanidhi, S.B., Waghmare, U.V., Rao, C.N.R.: BiferroicYCrO3. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 220101 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Ramesha, K., Llobet, A., Th, P., Serrao, C.R., Rao, C.: Observation of local non-centrosymmetry in weakly biferroic YCrO3. N. R.: J. Phys.: Condens. Matter. 19, 102202 (8pp) (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Nair, V., Das, A., Subramanian, V., Santhosh, P.N.: Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 13, 213907 (2013).  https://doi.org/10.1063/1.4808459 ADSCrossRefGoogle Scholar
  7. 7.
    Calder, S., An, K., Boehler, R., dela Cruz, C.R., Frontzek, M.D., Guthrie, M., Haberl, B., Huq, A., Kimber, S.A.J., Liu, J., Molaison, J.J., Neuefeind, J., Page, K., dos Santos, A.M., Taddei, K.M., Tulk, C., Tucker, M.G.: A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. Rev. Sci. Instrum. 89, 092701 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Rodríguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 192, 55–69 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Wills, A.: A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B Condensed Matter. 276-278, 680–681 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio Jr., R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017)CrossRefGoogle Scholar
  11. 11.
    Wollan, E.O., Koehler, W.C.: Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds[(1−x)La, xCa]MnO3. Phys. Rev. 100, 545–563 (1955)ADSCrossRefGoogle Scholar
  12. 12.
    Treves, D.: Studies on Orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033–1039 (1965).  https://doi.org/10.1063/1.1714088 ADSCrossRefGoogle Scholar
  13. 13.
    Pankove J. I.: Optical Processes in Semiconductors, Ed. Prentice Hall, 1971Google Scholar
  14. 14.
    Tauc, J., Grigorovici, R., Vancu, A.: Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 15(2), 627–637 (1966).  https://doi.org/10.1002/pssb.19660150224 ADSCrossRefGoogle Scholar
  15. 15.
    Butler, M.A., Ginley, D.S., Eibschütz, M.: J. Appl. Phys. 48(7), (July 1977)Google Scholar
  16. 16.
    Krishnan, S., Suchand Sandeep, C.S., Philip, R., Kalarikkal, N.: Two-photon assisted excited state absorption in multiferroic YCrO3 nanoparticles. Chem. Phys. Lett. 529, 59–63 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Perdew, J.P., et al.: Phys. Rev. B46. 6671–6687 (1992)Google Scholar
  18. 18.
    Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Martins Filho, W.L., Berquo, T.S.: Molecule Derived Synthesis of Nanocrystalline YFeO3and Investigations on Its Weak Ferromagnetic Behavior. Chem. Mater. 16, 1906–1913 (2004)CrossRefGoogle Scholar
  19. 19.
    Dasari, N., Mandal, P., Sundaresan, A., Vidhyadhiraja, N.S.: Weak ferromagnetism and magnetization reversal in YFe1−xCrxO3. EPL. 99, 17008 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Stoeffler, D., Chaker, Z.: First principles study of the electronic structure and magnetic properties of YFeO3 oxide. J. Magn. Magn. Mater. 442, 255–264 (2017).  https://doi.org/10.1016/j.jmmm.2017.06.129 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Salazar-Rodriguez
    • 1
    Email author
  • Domingo Aliaga-Guerra
    • 1
  • Keith M. Taddei
    • 2
  1. 1.Facultad de CienciasUniversidad Nacional de IngenieríaLimaPeru
  2. 2.Oak Ridge National Laboratory (ORNL)Oak RidgeUSA

Personalised recommendations