Advertisement

Hyperfine Interactions

, 240:78 | Cite as

Stability of monoclinic phase in pure and Gd-doped HfO2: a hyperfine interaction study

  • Debashis BanerjeeEmail author
  • Chandi Charan Dey
  • Sk. Wasim Raja
  • Ram Sewak
  • S. V. Thakare
  • Raghunath Acharya
  • Pradeep Kumar Pujari
Article
  • 17 Downloads
Part of the following topical collections:
  1. Proceedings of the International Conference on Hyperfine Interactions and their Applications (HYPERFINE 2019), Goa, India, 10-15 February 2019

Abstract

The present Time Differential Perturbed γ-γ Angular Correlation (TDPAC) measurements in bulk HfO2 report, for the first time, the presence of three regular sites at ambient condition, apart from the stable monoclinic phase (m-HfO2). Also, the effects of Gd impurity (5 at%) on HfO2 crystal structure was investigated by PAC. In pure HfO2, apart from the monoclinic component (~76%), four other minor frequency components have been found at room temperature. To further investigate the origin of these minor frequency components, PAC measurement at 673 K was performed. At 673 K, population of two of the four minor components was enhanced at the expense of the m-HfO2 as the population of m-HfO2 reduces to ~58%. On doping with 5 at% Gd, the population of monoclinic site drastically reduced to ~10% while one of the minor components got enhanced to a large extent (68%). The enhancements of the three minor components, both by temperature or by Gd impurity, indicate that these are the regular phases of HfO2 and could therefore be attributed to three orthorhombic phases of HfO2. The fourth minor component (5–10%) with values of ωQ ~ 7 Mrad/s, η = 0 can be assigned to crystalline defect site.

Keywords

Pure HfO2 Gd doped HfO2 Perturbed angular correlation LaBr3(Ce)-BaF2 

Notes

Acknowledgements

Authors sincerely thank all the members at DHRUVA reactor, BARC, Mumbai, India for successfully producing the probe nuclei at desired activity level.

References

  1. 1.
    Wilk, G.D.: High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Wilk, G.D., Wallace, R.M., Anthony, J.M.: Hafnium and zirconium silicates for advanced gate dielectrics. J. Appl. Phys. 87, 484–492 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Nguyen, N.V., Albert, D., Chandler-Horowitz, D.: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87, 192903 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nature. 430, 630 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Mueller, S., Adelmann, C., Singh, A., Van Elshocht, S.: SchroederU., Mikolajick,T.:ferroelectricity in Gd-doped HfO2 thin Films.ECS J. solid state. Sci. Technol. 1(6), N123–N126 (2012)Google Scholar
  6. 6.
    Sang, X., Grimley, E.D., Schenk, T., Schroeder, U., LeBeau, J.M.: On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 106, 162905 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Fancher, C.M., Zhao, L., Nelson, M., Bai, L., Shen, G., Jones, J.L.: Pressure-induced structures of Si-doped HfO2. J. Appl. Phys. 117, 234102 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H., Izumi, F.: Structural analysis of orthorhombic hafnia by neutron powder diffraction. J. Am. Ceram. Soc. 78(1), 233–237 (1995)CrossRefGoogle Scholar
  9. 9.
    Huan, T.D., Sharma, V., Rossetti Jr., G.A., Ramprasad, R.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B. 90, 064111 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Ayala, A., Alonso, R., López-García, A.: Temperature dependence of the hyperfine electric-field-gradient tensor at 181Ta in HfO2. Phys. Rev. B. 50, 3547–3552 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Taylor, M.A., Alonso, R.E., Errico, L.A., López-García, A., de la Presa, P., Svane, A., Christensen, N.E.: Coexistence of different charge states in ta-doped monoclinic HfO2: theoretical and experimental approaches. Phys. Rev. B. 82, 165203 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Catchen, G.L.: Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. MRS Bull. 20(7), 37–46 (1995)CrossRefGoogle Scholar
  13. 13.
    Schatz, G., Weidinger, A.: Nuclear Condensed Matter Physics; Nuclear Methods and Application. translated by J. A. Gardner. John Wiley, New York (1996)Google Scholar
  14. 14.
    Dey, C.C.: A perturbed angular correlation spectrometer for material science studies. Pramana. 70(5), 835–846 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Banerjee, D., Gupta, S.K., Patra, N., Raja, S.W., Pathak, N., Bhattacharyya, D., Pujari, P.K., Thakare, S.V., Jha, S.N.: Unraveling doping induced anatase–rutile phase transition in TiO2 using electron, X-ray and gamma-ray as spectroscopic probes. Phys. Chem. Chem. Phys. 20, 28699–28711 (2018)CrossRefGoogle Scholar
  16. 16.
    Banerjee, D., Das, P., Guin, R., Das, S.K.: Nuclear quadrupole interaction at 181Ta in hafnium dioxide fiber: time differential perturbed angular correlation measurements and ab initio calculations. J. Phys. and Chem. of Solids. 73(9), 1090–1094 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Forker, M., de la Presa, P., Hoffbauer, W., Schlabach, S., Bruns, M., Szabó, D.V.: Structure, phase transformations, and defects of HfO2 and ZrO2 nanoparticles studied by 181Ta and 111Cd perturbed angular correlations, 1H magic-angle spinning NMR, XPS, and x-ray and electron diffraction. Phys. Rev. B. 77, 054108 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Hoffmann, M., Schroeder, U., Schenk, T., Shimizu, T., Funakubo, H., Sakata, O., Pohl, D., Drescher, M., Adelmann, C., Materlik, R., Kersch, A., Mikolajick, T.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Lee, Choong-Ki, Cho, E., Lee, H., Hwang, C., S., Han, S.: First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 012102 (2008)Google Scholar
  20. 20.
    Wang, L.G., Xiong, Y., Xiao, W., Cheng, L., Du, J., Tu, H., van de Walle, A.: Computational investigation of the phase stability and the electronic properties for Gd-doped HfO. Appl. Phys. Lett. 104, 201903 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Batra, R., Huan, T.D., Rossetti Jr., G.A., Ramprasad, R.: Dopants promoting ferroelectricity in hafnia: insights from a comprehensive chemical space exploration. Chem. Mater. 29(21), 9102–9109 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Debashis Banerjee
    • 1
    • 2
    Email author
  • Chandi Charan Dey
    • 3
    • 4
  • Sk. Wasim Raja
    • 1
    • 2
  • Ram Sewak
    • 3
    • 4
  • S. V. Thakare
    • 5
  • Raghunath Acharya
    • 4
    • 6
  • Pradeep Kumar Pujari
    • 4
    • 6
  1. 1.Radiochemistry Division (BARC)Variable Energy Cyclotron CentreKolkataIndia
  2. 2.Bhabha Atomic Research Centre, VECCKolkataIndia
  3. 3.Applied Nuclear Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia
  5. 5.Radiopharmaceutical DivisionBhabha Atomic Research CentreMumbaiIndia
  6. 6.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations